
NetSaint Documentation
Version 0.0.6

Last Updated: June 19th, 2000

About NetSaint
What is NetSaint?
System requirements
Licensing
History
Known issues
Acknowledgements
Comments and feedback
Downloading the latest version
Other monitoring utilities

Release Notes
What's new in this version
Change log

Installing NetSaint
Unpacking the distribution
Compiling the programs
Installing NetSaint
Directory structure and file locations
Installing the web interface
Configuring authorization for the CGIs

Configuring NetSaint
Configuration overview
Main configuration file options
Host configuration file options
CGI configuration file options
Verifying the configuration

Running NetSaint
Starting NetSaint
Stopping and restarting NetSaint

NetSaint Plugins
Standard plugins
Writing your own plugins

NetSaint Addons

NetSaint Documentation

http://www.netsaint.org/docs/0_0_6/index.html (1 of 2) [6/28/2000 7:59:41 AM]

http://www.netsaint.org/changelog.html

cl_status - Console interface for viewing status of monitored services
neat - Web-based administration interface for NetSaint
netsaint_mrtg - MRTG scripts for graphing NetSaint host and service status information
netsaint_reports- Reporting tool for host and service states over time
netsaint_statd - Perl daemon for monitoring remote host information
nrpe - Daemon and plugin for executing plugins on remote hosts
nrpep - Service and plugin for executing plugins on remote hosts
nsa - Web-based administration interface for NetSaint

Theory Of Operation
Index
Determing status and reachability of network hosts
Network outages
Notifications
Plugin theory
Service check scheduling
State types
Time periods

Advanced Topics
Event handlers
External commands
Indirect host and service checks
Passive service checks
Program modes
Redundant monitoring
Service check parallelization
Volatile services
Notification escalations
Distributed monitoring

Developer Information
Index

Fun Things That Waste Time
Create a virtual network assistant that speaks!

Miscellaneous
Frequently Asked Questions (FAQs)
Using macros in commands
NetSaint status levels
Information on the CGIs

NetSaint Documentation

http://www.netsaint.org/docs/0_0_6/index.html (2 of 2) [6/28/2000 7:59:41 AM]

About NetSaint

What Is NetSaint?

NetSaint is a network monitoring application. It is designed to run under Linux, although it should work
under most other unices as well. Some of its features include:

Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)●

Monitoring of host resources (processor load, disk usage, etc.)●

Simple plugin design that allows users to easily develop their own service checks●

Parallelized service checks●

Ability to define network host hierarchy using "parent" hosts, allowing detection of and distinction
between hosts that are down and those that are unreachable

●

Contact notifications when service or host problems occur and get resolved (via email, pager, or
user-defined method)

●

Ability to define event handlers to be run during service or host events for proactive problem
resolution

●

Automatic log file rotation●

Support for implementing redundant monitoring hosts●

Optional web interface for viewing current network status, notification and problem history, log
file, etc.

●

NetSaint is not...
Designed to run under NT - it never has been and never will be.●

An SNMP manager. If that's what you need, look elsewhere.●

System Requirements

The only requirement of running NetSaint is a machine running Linux (or UNIX variant) and a C
compiler. You will probably also want to have TCP/IP configured, as most service checks will be
performed over the network.

You are not required to use the CGIs included with the core NetSaint distribution. However, if you do
decide to use them, you will need to have the following software installed...

A web server (preferrably Apache)1.
Thomas Boutell's gd library version 1.6.3 or higher (required by the statusmap CGI)2.

Licensing

NetSaint is free software and may be used, copied, modified, etc. in accordance with the GNU General
Public License version 2 or later. Information on the GPL license and open source software model can be
found at www.opensource.org

About NetSaint

http://www.netsaint.org/docs/0_0_6/about.html (1 of 3) [6/28/2000 7:59:43 AM]

http://www.linux.com/
http://www.c4.com/return.html?SO=FASTER&SearchText=snmp+manager&SearchWhat=web&ReturnTo=0&IPageFlag=1
http://www.apache.org/
http://www.boutell.com/gd
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/

History
Version 0.0.6b1 - 06/11/2000●

Version 0.0.5 - 04/26/2000●

Version 0.0.4 - 09/02/1999●

Version 0.0.3 - 05/21/1999●

Version 0.0.2p1 - 04/18/1999●

Version 0.0.2 - 04/10/1999●

Version 0.0.1 - 03/14/1999●

Known Issues

NetSaint is still an immature program, so there are bound to be a lot of bugs in it. The current list of
known issues and bugs can be found at http://www.netsaint.org/bugs.html

Acknowledgements

Several people have contributed to NetSaint by either reporting bugs, suggesting improvements, writing
plugins, etc. A list of some of the many contributors to the development of NetSaint can be found at
http://www.netsaint.org/contributors.html. Unfortunately, this list is quite of of date. I've been getting so
many bug reports, patches, suggestions, plugins, etc. that I can't keep up...

Comments And Feedback

I developed NetSaint for my own use. Once I was reasonably happy with it, I decided to release it so that
others could use it. NetSaint is free software, so I don't get any compensation for the hours I spend
working on it. In order to keep more versions coming, all I ask is that you give me some feedback. I need
to know what doesn't work in the current version and what you want to see in future releases. Positive
feedback is appreciated, as it helps assure me that NetSaint is actually being used and is working for
people. You can email me at netsaint@netsaint.org

Downloading The Latest Version

You can check for new versions of NetSaint at the following sites:
http://www.netsaint.org●

http://www.freshmeat.net (appindex 923738250)●

Other Monitoring Utilities

In case you weren't aware, there are other network monitoring utilities available besides NetSaint. I think
NetSaint is a pretty good contender, but I'm obviously biased... Have a look at the competition for
yourself - here are links to a few of them:

Angel Network Monitor●

Autostatus●

Big Brother●

Eclipse●

About NetSaint

http://www.netsaint.org/docs/0_0_6/about.html (2 of 3) [6/28/2000 7:59:43 AM]

http://www.netsaint.org/bugs.html
http://www.netsaint.org/contributors.html
mailto:netsaint@netsaint.org
http://www.netsaint.org/
http://www.freshmeat.net/
http://www.freshmeat.net/appindex/1999/04/10/923738250.html
http://www.paganini.net/angel/
http://www.angio.net/consult/autostatus/
http://maclawran.ca/sean/bb-dnld/
ftp://ftp.neosoft.com/pub/tcl/sorted/net/eclipse-1.0/

The Event Monitor Project●

MARS●

Mon●

Netup (French)●

NocMonitor●

NOCOL●

NodeWatch●

Over-CR●

PIKT●

RITW●

Spong●

Sysmon●

About NetSaint

http://www.netsaint.org/docs/0_0_6/about.html (3 of 3) [6/28/2000 7:59:43 AM]

http://www.gsyc.inf.uc3m.es/~assman/em/
http://www.altara.org/mars.html
http://www.kernel.org/software/mon/
http://www.pasteur.fr/units/sis/netup/
http://www.nocmonitor.net/
http://www.netplex-tech.com/software/nocol/
http://junebug.fhcrc.org/nodewatch/
http://www.molitor.org/overcr/
http://gsbwww.uchicago.edu/pikt/
http://www.terravista.pt/Ancora/1883/ritw_e.html
http://strobe.weeg.uiowa.edu/~edhill/public/spong/
http://www.sysmon.org/

Information On The CGIs

Introduction

This is a brief description of each CGI distributed with NetSaint, along with the various options that can be specified in the
URL to control output. Authorization requirements for each CGI are also discussed.

Important: By default, the CGIs require that you have authenticated to the web server and are authorized to view any
information you are requesting. For more information on configuring your web server and CGI configuration file to allow
for this, read the sections on setting up the web interface and CGI authorization.

Index

Status CGI
Status map CGI
Status world CGI (VRML)
Network outages CGI
Configuration CGI
Command CGI
Extended information CGI
Log file CGI
History CGI
Notifications CGI
Trends CGI

Status CGI

File Name: status.cgi
Description:
This is the most important CGI
included with NetSaint. It allows you
to view the current status of all hosts
and services that are being
monitored. The status CGI can
produce two main types of output - a
status overview of all host groups (or
a particular host group) and a
detailed view of all services (or those
associated with a particular host).
Pretty icons can be associated with
hosts by defining extended host
information entries in the CGI
configuration file.

Authorization Requirements:

CGI Arguments:

Argument Description

host=all This will produce a detailed view of the status of all
services being monitored with NetSaint

host=xxxx
This will produce a detailed view of the status of all
services associated with host xxxx, where xxxx is the short
name of the host as defined in the host configuration file.

hostgroup=all
This will produce an overview of all services (and their
associated hosts) being monitored with NetSaint, grouped
into various host groups.

hostgroup=xxxx

This will produce an overview of all services (and their
associated hosts) belonging to host group xxxx, where xxxx
is the short name of the host group as defined in the host
configuration file.

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (1 of 7) [6/28/2000 7:59:49 AM]

If you are authorized for all hosts
you can view all hosts and all
services.

●

If you are authorized for all
services you can view all services.

●

If you are an authenticated contact
you can view all hosts and services
for which you are a contact.

●

columns=x

This option may only be used in conjunction with the
hostgroup=all argument. It allows you to control how
many columns of hostgroups are displayed on the
generated page. For instance, supplying
hostgroup=all&columns=4 as arguments to the CGI will
produce an overview page that contains four columns of
host groups.

style=detail

This option may only be used in conjunction with the
hostgroup argument. Supplying this option will produce a
detailed view of all services for hosts that are members of
the hostgroup you specified. If you do not supply this
option, the default action is to produce a status overview
page.

nopopup
This option will suppress the host alert console window
that gets displayed when one or more monitored hosts is
either down or unreachable.

Status Map CGI

File Name: statusmap.cgi
Description:
This CGI dynamically creates a map of all
hosts that you have defined on your
network. The CGI uses Thomas Boutell's
gd library (version 1.6.3 or higher) to create
a PNG image of your network layout.
Pretty icons can be associated with the
hosts in the generated image by defining
extended host information entries in the
CGI configuration file. If you can't seem to
find this CGI, or if you have get errors
when trying to compile it, read this FAQ.

Authorization Requirements:
If you are authorized for all hosts you can
view all hosts.

●

If you are an authenticated contact you can
view hosts for which you are a contact.

●

Note: Users who are not authorized to view
specific hosts will see unknown nodes in those
positions. I realize that they really shouldn't see
anything there, but it doesn't make sense to even
generate the map if you can't see all the host
dependencies...

CGI Arguments:

Argument Description

host=all This will produce a network map of all hosts
being monitored with NetSaint

host=xxxx

This will produce a network map of host xxxx and
all of its child hosts, where xxxx is the short name
of the host as defined in the host configuration
file.

maxwidth=xxxx
This will limit the maximum width of the
produced image to xxxx pixels.

maxheight=xxxx
This will limit the maximum height of the
produced image to xxxx pixels.

hspacing=xx
This sets the horizontal spacing between host
nodes to xx pixels.

vspacing=xx
This sets the vertical spacing between host nodes
to xx pixels.

createimage
This instructs the CGI to create the PNG image
instead of the HTML code with imagemap
coordinates

Status World CGI (VRML)

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (2 of 7) [6/28/2000 7:59:49 AM]

http://www.boutell.com/gd

File Name: statuswrl.cgi
Description:
This CGI dynamically creates a 3-D VRML
model of all hosts that you have defined on
your network. Images can be used as texture
maps on host objects defining extended host
information entries in the CGI configuration
file. You'll need a VRML browser (like
Cortona, Cosmo Player or WorldView)
installed on your system before you can
actually view the generated model.

Authorization Requirements:
If you are authorized for all hosts you can view
all hosts.

●

If you are an authenticated contact you can
view hosts for which you are a contact.

●

Note: Users who are not authorized to view specific
hosts will see unknown nodes in those positions. I
realize that they really shouldn't see anything there, but
it doesn't make sense to even generate the map if you
can't see all the host dependencies...

CGI Arguments:

Argument Description

host=all This will produce a network model of all hosts
being monitored with NetSaint

host=xxxx
This will produce a network model of host xxxx and
all of its child hosts, where xxxx is the short name of
the host as defined in the host configuration file.

notextures This will prevent images from being texture
mapped onto host objects.

notext This will suppress the billboard text (host name and
status) that is displayed over the host objects.

Network Outages CGI

File Name: outages.cgi
Description:
This CGI will produce a listing of "problem" hosts on your network that are causing network outages.
This can be particularly useful if you have a large network and want to quickly identify the source of
the problem. Hosts are sorted based on the severity of the outage they are causing. More information on
how the network outage CGI works can be found here.

Authorization Requirements:
If you are authorized for all hosts you can view all hosts.●

If you are an authenticated contact you can view hosts for which you are a contact.●

Configuration CGI

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (3 of 7) [6/28/2000 7:59:49 AM]

http://www.parallelgraphics.com/cortona/
http://www.cosmosoftware.com/
http://www.intervista.com/

File Name: config.cgi
Description:
This CGI allows you to view host, host
group, contact, contact group, time period,
service, and command definitions that you
have defined in your host configuration
file(s).

Authorization Requirements:
You must be authorized for configuration
information in order to view contact, contact
group, host group, time period, and command
definitions. You will also be able to view all
host and service definitions.

●

If you are authorized for all hosts you can
view all host and service definitions.

●

If you are authorized for all services you can
view all service definitions.

●

If you are an authenticated contact you can
view all host and service definitions for
which you are a contact.

●

CGI Arguments:

Argument Description

type=xxxx

This option allows you to specify what type of
definitions you would like to view. Valid options
include "hosts", "hostgroups", "contacts",
"contactgroups", "timeperiods", "commands", and
"services".

Command CGI

File Name: cmd.cgi
Description:
This CGI allows you to send commands to the NetSaint process. Although this CGI has several
arguments, you would be better to leave them alone. Most will change between different revisions of
NetSaint. Use the extended information CGI as a starting point for issuing commands.

Authorization Requirements:
You must be authorized for system commands in order to issue commands that affect the NetSaint process
(restarts, shutdowns, mode changes, etc.).

●

If you are authorized for all host commands you can issue commands for all hosts and services.●

If you are authorized for all service commands you can issue commands for all services.●

If you are an authenticated contact you can issue commands for all hosts and services for which you are a contact.●

Notes:

If you have chosen not to use authentication with the CGIs, this CGI will not allow anyone to issue commands to
NetSaint. This is done for your own protection. I would suggest removing this CGI altogether if you decide not to

●

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (4 of 7) [6/28/2000 7:59:49 AM]

use authentication with the CGIs.
In order for the CGI to issue commands to NetSaint, you will have to set the proper file and directory permissions
as described in this FAQ.

●

Extended Information CGI

File Name: extinfo.cgi
Description:
This CGI allows you to view NetSaint process information, host and service state statistics, host and
service comments, and more. It also serves as a launching point for sending commands to NetSaint via
the command CGI. Although this CGI has several arguments, you would be better to leave them alone -
they are likely to change between different releases of NetSaint. You can access this CGI by clicking on
the 'Network Health' and 'Process Information' links on the side navigation bar, or by clicking on a host
or service link in the output of the status CGI.

Authorization Requirements:
You must be authorized for system information in order to view NetSaint process information.●

If you are authorized for all hosts you can view extended information for all hosts and services.●

If you are authorized for all services you can view extended information for all services.●

If you are an authenticated contact you can view extended information for all hosts and services for which you
are a contact.

●

Log File CGI

File Name: showlog.cgi
Description:
This CGI will display the log file. If you have
log rotation enabled, you can browse
notifications present in archived log files by
using the navigational links near the top of the
page.

Authorization Requirements:
You must be authorized for system
information in order to view the log file.

●

CGI Arguments:

Argument Description

archive=x

This option allows you to browse notifications in the
xth latest log archive. A value of 0 will cause the
current log file to be used, a value of 1 will cause the
most recent archived log to be used, and so on...

oldestfirst

This option allows view notifications with older
entries at the top of the page and newer entries at the
bottom. The CGI will normally reverse the log file
so that newer log entries show up at the top of the
page while older ones are at the bottom.

History CGI

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (5 of 7) [6/28/2000 7:59:49 AM]

File Name: history.cgi
Description:
This CGI is used to display the history of
problems with either a particular host or all
hosts. The output is basically a subset of the
information that is displayed by the log file
CGI. You have the ability to filter the output to
display only the specific types of problems you
wish to see (i.e. hard and/or soft alerts, various
types of service and host alerts, all types of
alerts, etc.). If you have log rotation enabled,
you can browse history information present in
archived log files by using the navigational
links near the top of the page.

Authorization Requirements:
If you are authorized for all hosts you can view
history information for all hosts and all
services.

●

If you are authorized for all services you can
view history information for all services.

●

If you are an authenticated contact you can
view history information for all services and
hosts for which you are a contact.

●

CGI Arguments:

Argument Description

host=all This will display the history of all hosts being
monitored with NetSaint

host=xxxx
This will display the history of host xxxx, where
xxxx is the short name of the host as defined in the
host configuration file.

type=x

This option allows you to control which types of
historical alerts are displayed. As x is a numerical
value generated by the CGI, I would suggest using
the dropdown box to select the type of alerts you
want to view.

statetype=x

This option allows you to control whether soft or
hard alerts (or both) are displayed. As x is a
numerical value generated by the CGI, I would
suggest using the dropdown box to select the type
of alerts you want to view.

archive=x

This option allows you to browse the history
information in the xth latest log archive. A value of
0 will cause the current log file to be used, a value
of 1 will cause the most recent archived log to be
used, and so on...

oldestfirst

This option allows view history information with
older entries at the top of the page and newer
entries at the bottom. The CGI will normally
reverse the log file so that newer log entries show
up at the top of the page while older ones are at the
bottom.

Notifications CGI

File Name: notifications.cgi

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (6 of 7) [6/28/2000 7:59:49 AM]

Description:
This CGI is used to display host and service
notifications that have been sent to various
contacts. The output is basically a subset of
the information that is displayed by the log
file CGI. You have the ability to filter the
output to display only the specific types of
notifications you wish to see (i.e. service
notifications, host notifications, notifications
sent to specific contacts, etc). If you have log
rotation enabled, you can browse
notifications present in archived log files by
using the navigational links near the top of
the page.

Authorization Requirements:
If you are authorized for all hosts you can
view notifications for all hosts and all
services.

●

If you are authorized for all services you can
view notifications for all services.

●

If you are an authenticated contact you can
view notifications for all services and hosts
for which you are a contact.

●

CGI Arguments:

Argument Description

host=all
This will display all notifications that have been
sent out for all hosts (and their associated services)
being monitored with NetSaint

host=xxxx

This will display all notifications that have been
sent out for host xxxx (and its associated services),
where xxxx is the short name of the host as defined
in the host configuration file.

contact=all This will display all service and host notifications
that have been sent out to all contacts.

contact=xxxx

This will display all service and host notifications
that have been sent out to contact xxxx, where xxxx
is the short name of the contact as defined in the
host configuration file.

type=x

This option allows you to control which types of
notifications are displayed. As x is a numerical
value generated by the CGI, I would suggest using
the dropdown box to select the types of
notifications you want to view.

archive=x

This option allows you to browse notifications in
the xth latest log archive. A value of 0 will cause
the current log file to be used, a value of 1 will
cause the most recent archived log to be used, and
so on...

oldestfirst

This option allows view notifications with older
entries at the top of the page and newer entries at
the bottom. The CGI will normally reverse the log
file so that newer log entries show up at the top of
the page while older ones are at the bottom.

Trends CGI

File Name: trends.cgi
Description:
This CGI is used to display host and service notifications that have been sent to various contacts. The
output is basically a subset of the information that is displayed by the log file CGI. You have the ability
to filter the output to display only the specific types of notifications you wish to see (i.e. service
notifications, host notifications, notifications sent to specific contacts, etc). If you have log rotation
enabled, you can browse notifications present in archived log files by using the navigational links near
the top of the page.

Authorization Requirements:
If you are authorized for all hosts you can view trends for all hosts and all services.●

If you are authorized for all services you can view trends for all services.●

If you are an authenticated contact you can view trends for all services and hosts for which you are a contact.●

Information On The CGIs

http://www.netsaint.org/docs/0_0_6/cgis.html (7 of 7) [6/28/2000 7:59:49 AM]

What's New in Version 0.0.6

Note: This is a beta release of NetSaint. Any bugs should be reported to the netsaint-devel mailing list or
to me at netsaint@netsaint.org.

Here are some of the things that have been changed or added since the 0.0.5 release...

New Features
Multiple Parent Hosts. You may now specify multiple parent hosts for each host definition. The
order in which you specify parent hosts has no effect on how things are monitored. However, the
statusmap and statuswrl CGIs will use the first parent host that you specify as the primary parent
for purposes of drawing only.

1.

Passive Service Checks. Previous to version 0.0.6, the only way NetSaint could check the status
of any service was to actively check (i.e. perform the check itself). In 0.0.6, NetSaint can now
access service check results from external apps. External apps can submit service check results to
NetSaint via the newly added PROCESS_SERVICE_CHECK_RESULT external command.
NetSaint will treat and act upon passive service checks in the same way it does "normal" active
checks. More information on how passive service checks work can be found here.

2.

Volatile Services. Service definitions have been extended to distinguish between normal services
and newly added "volatile" services. Volatile services differ from normal services in that they get
logged, generated a notification, and have an event handler run every time they are in a hard,
non-OK state and the result of a service check shows the service to be in the same non-OK state.
Volatile services are especially useful for monitoring asynchronous events like SNMP traps and
security alerts. More information on how volatile services work can be found here.

3.

Notification Escalations. Two new types of definitions have been added to the host config file to
support optional escalation of service and host notifications. The two new definitions are service
escalations and hostgroup escalations. More information on how notification escalations work can
be found here.

4.

Distributed Monitoring. NetSaint can now be configured to do distributed monitoring of your
network. More gory details on how distributing monitoring works can be found here.

5.

Network Outages CGI. A new network outages CGI has been added to help pinpoint the cause of
network outages (from the view of NetSaint). More information on how the new CGI works can be
found here.

6.

Trends CGI. A new trends CGI has been added to allow you to view a graph of historical state7.

What's New

http://www.netsaint.org/docs/0_0_6/whatsnew.html (1 of 3) [6/28/2000 7:59:51 AM]

http://www.netsaint.org/mailinglist.html
mailto:netsaint@netsaint.org

data for any given host or service over an arbitrary period of time. In order to produce useful
results, this CGI expects that you have enabled log rotation and are storing historical log files in
the directory specified by the log_archive_path variable.

Sorting In The Status CGI. This has been requested for some time now, and I finally got around
to doing something about it. Service result entries in the status CGI (detail view) can be sorted by
host name, service description, state, attempt number, and last check time. Sort orders can also be
reversed. In order to sort the entries in the status CGI, click on the arrows located in the table
headers.

8.

Audio Alerts In The Status CGI. If you want to get an audible notification of network problems
in the status CGI, you can use the audio_alerts in the CGI configuration file. You're able to specify
different sounds to play for services that are in critical, warning, and unknown states, as well as
hosts that are in unreachable or down states. If you configure audio files for multiple alert states,
NetSaint will only play the sound that corresponds to the most critical problem.

9.

CGIs Now Use Stylesheets. Everyone has their own idea of how the CGIs should look. I've
moved most of the formatting code in the CGIs out to stylesheets. Each CGI has its own stylesheet
that you can modify as you like. You'll need to have at least a 3.0 browser to actually be able to
use the stylesheets - the output looks fairly dull without any style (duh!). BTW, Netscape and IE
look like they both have rather horrid support of stylesheets when it comes to tables. Netscape is
probably worse that IE, but they both have their problems...

10.

State Retention During Restarts. Service and host status information can be preserved between
program restarts. This is useful if there are pre-existing problems on your network (at the time
NetSaint is restarted) and you don't want to receive initial notifications right away. This option will
preserve state information, plugin output, last notification time, and state statistics for both hosts
and services. In order to save state information between restarts you must enable the
retain_state_information variable and specify a file in which to save the information by using the
state_retention_file variable.

11.

Logging Of Initial States. Initial host and service states can be logged if you find the need to do
so. This is useful if you are using an application that scans the log file to determine long-term state
statistics for services and hosts. Normally, states are only logged when there is a problem or
recovery. You can enable initial service and host state logging by using the log_initial_states
option in the main config file.

12.

Acknowledgement of Problems. Users can now acknowlege host and service problems via the
extinfo CGI. Acknowledgements can only be made after a host or service experiences a problem at
at least one notification has been sent out. Upon making an acknowledgement of a problem, a
comment will be added to the appropriate host or service, an acknowledgement notification is sent
out, and future problem notifications will be temporarily disabled until the host or service changes
state.

13.

What's New

http://www.netsaint.org/docs/0_0_6/whatsnew.html (2 of 3) [6/28/2000 7:59:51 AM]

Command Timeouts. Command timeouts can now be specified globally for service checks, host
checks, event handlers, and notifications. Timeout values are controled by the
service_check_timeout, host_check_timeout, event_handler_timeout, and command_timeout
options in the main config file.

14.

Macro Changes. This one is important. I've changed the $SERVICESTATE$ And
$HOSTSTATE$ macros to reflect the actual state of the service or host during recoveries, instead
of setting the macro equal to "RECOVERY". For service recoveries the $SERVICESTATE$
macro is set to "OK" and for host recoveries the $HOSTSTATE$ macro is set to "UP". This was
an inconsistency which had been annoying me for a long time, so I decided to change it and be
done with it. Make sure to modify any event handlers you have that use the state macros! Also, a
new macro ($NOTIFICATIONTYPE$) has been introduced, which can be used to identify what
type of notification is being sent out. Values for the macro include "PROBLEM", "RECOVERY",
and "ACKNOWLEDGEMENT". The $SUMMARY$ macro has been removed - at some point it
stopped working and I just decided to kill it off. Lastly, the $OUTPUT$ macro can now be used in
host notifications as well as service notifications. When the $OUTPUT$ macro is used in host
notifications, it will contain the text returned from the host check command. More information on
macros can be found here.

15.

Change In Location of CGI Config File. The CGIs now expect that the CGI config file
(nscgi.cfg) resides in the same directory as your main and host config files (usually
/usr/local/netsaint/etc). This was done to make things a bit more consistent and make it easier for
creating RPMs.

16.

Developer Documentation. I've added a new section to the documentation for developers who are
wanting to interface third-party apps with NetSaint or exploit some of its internal capabilities
(which are not yet available through the config files). Documentation is provided on the format of
the various files that NetSaint uses, as well as internal functions which can be used to extend
NetSaint's ability to read/save configuration information. I'll keep this information updated
throughout the various releases of NetSaint. The developer documentation can be found here.

17.

Internal Overhauls. A lot of the internal code in the core program and CGIs has been overhauled.
End users won't see a difference, but it makes the code easier to work with. Some of the changes
that have been made include changing static buffers in the data structures to use dynamically
allocated memory, an overhaul of the internal logging code, and shared data structures and
functions between the core and CGIs.

18.

The Usual Bug Fixes. Would any new release ever be complete without bug fixes from previous
versions?

19.

What's New

http://www.netsaint.org/docs/0_0_6/whatsnew.html (3 of 3) [6/28/2000 7:59:51 AM]

Host Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:
Lines that start with a '#' character are taken to be comments and are not processed1.
Variables names must begin at the start of the line - no white space is allowed before the name2.
Variable names are case-sensitive3.

Sample Configuration

A sample host configuration file can be created by running the 'make config' command. The default name of the main configuration file is hosts.cfg - look for it in the NetSaint distribution directory or in the etc/ subdirectory of your installation.

Relationship of Data

In order to better help you understand how hosts, host groups, contacts, contact groups, services, etc. relate to each other I've throw together some diagrams. You can find them over in the theory of operation documentation.

Index

Host definitions
Host group definitions
Contact definitions
Contact group definitions
Command definitions
Service definitions
Time period definitions
Service escalation definitions
Hostgroup escalation definitions

Host Definition
Format: host[<host_name>]=<host_alias>;<address>;<parent_hosts>;<host_check_command>;<max_attempts>;<notification_interval>;<notification_period>;<notify_recovery>;<notify_down>;<notify_unreachable>;<event_handler>
Example: host[es-gra]=ES-GRA Server;192.168.0.1;;check-host-alive;3;120;24x7;1;1;1;

A host definition is used to define a physical server, workstation, device, etc. that resides on your network. The different arguments to a host definition are described below.

<host_name> This is a short name used to identify the host. It is used in host group and service definitions to reference this particular host. Hosts can have multiple services (which are monitored) associated with them. When used properly, the $HOSTNAME$ macro will contain this short name.

<host_alias> This is a longer name or description used to identify the host. It is provided in order to allow you to more easily identify a particular host. When used properly, the $HOSTALIAS$ macro will contain this alias/description.

<address> This is the IP address of the host. You can use a FQDN to identify the host, but if DNS services are not availble this could cause problems. When used properly, the $HOSTADDRESS$ macro will contain this address.

<parent_hosts> This is a comma-delimited list of short names of the "parent" hosts for this particular host. Parent hosts are typically routers, switches, firewalls, etc. that lie between the monitoring host and a remote hosts. A router, switch, etc. which is closest to the remote host is considered to be that host's "parent". Read the "Determining
Status and Reachability of Network Hosts" document in the theory of operation section for more information. If this host is on the same network segment as the host doing the monitoring (without any intermediate routers, etc.) the host is considered to be on the local network and will not have a parent host. Leave this value
blank if the host does not have a parent host (i.e. it is on the same segment as the NetSaint host). The order in which you specify parent hosts has no effect on how things are monitored. However, the statusmap and statuswrl CGIs will use the first parent host that you specify as the primary parent for purposes of drawing only.

<host_check_command> This is the short name of the command that should be used to check if the host is up or down. Typically, this command would try and ping the host to see if it is "alive". The command must return a status of OK (0) or NetSaint will assume the host is down. If you leave this argument blank, the host will not be checked -
NetSaint will always assume the host is up. This is useful if you are monitoring printers or other devices that are frequently turned off.

<max_attempts> This is the number of times that NetSaint will retry the host check command if it returns any state other than an OK state. Setting this value to 1 will cause NetSaint to generate an alert without retrying the host check again. Note: If you do not want to check the status of the host, you must still set this to a minimum value of 1.
To bypass the host check, just leave the <host_check_command> option blank.

<notification_interval> This is the number of "time units" to wait before re-notifying a contact that this server is still down. Unless you've changed the interval_length value in the main configuration file from the default value of 60, this number will mean minutes.
<notification_period> This is the short name of the time period during which notifications of events for this host can be sent out to contacts. If a host goes down, becomes unreachable, or recoveries during a time which is not covered by the time period, no notifications will be sent out. Read the "Time Periods" document in the theory of operation

section for more information.
<notify_recovery> This value determines whether or not notifications should be sent to any contacts if the host is in a RECOVERY state. Set this value to 1 if notifications should be sent out about recovery states, 0 if they shouldn't. Note: If a contact is configured to not receive notifications of host recoveries, they will not be notified, regardless

of this setting.
<notify_down> This value determines whether or not notifications should be sent to any contacts if the host is in a DOWN state. Set this value to 1 if notifications should be sent out when the host goes down, 0 if they shouldn't. Note: If a contact is configured to not receive notifications about hosts that go down, they will not be notified,

regardless of this setting.
<notify_unreachable> This value determines whether or not notifications should be sent to any contacts if the host is in aa UNREACHABLE state. Set this value to 1 if notifications should be sent out when the host becomes unreachable, 0 if they shouldn't. Note: If a contact is configured to not receive notifications about unreachable hosts, they

will not be notified, regardless of this setting.
<event_handler> This is the short name of the command that should be run whenever a change in the state of the host is detected (i.e. whenever it goes down or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. If you do not wish to define an event handler for the

host, leave this option blank (as shown in the example above).
Host Group Definition
Format: hostgroup[<group_name>]=<group_alias>;<contact_groups>;<hosts>
Example: hostgroup[nt-servers]=All NT Servers;nt-admins;rosie,dev,liatris

A host group definition is used to group one or more hosts together for the purposes of simplifying notifications. Each host that you define must be a member of at least one host group - even if it is the only host in that group. Hosts can be in more than one host group. When a host goes down, becomes unreachable, or recovers, NetSaint will find which
host group(s) the host is a member of, get the contact group for each of those hostgroups, and notify all contacts associated with those contact groups. This may sound complex, but for most people it doesn't have to be. It does, however, allow for flexibility in determining who gets paged for what kind of problems. The different arguments to a host group
definition are outlined below.

<group_name> This is a short name used to identify the host group.
<group_alias> This is a longer name or description used to identify the host group. It is provided in order to allow you to more easily identify a particular host group.
<contact_groups> This is a list of the short names of the contact groups that should be notified whenever there are problems (or recoveries) with any of the hosts in this host group. Multiple contact groups should be separated by commas.
<hosts> This is a list of the short names of hosts that should be included in this group. Multiple host names should be separated by commas.
Contact Definition
Format: contact[<contact_name>]=<contact_alias>;<svc_notification_period>;<host_notification_period>;<svc_notify_recovery>;<svc_notify_critical>;<svc_notify_warning>;lt;host_notify_recovery>;<host_notify_down>;<host_notify_unreachable>;<service_notify_commands>;<host_notify_commands>;<email_address>;<pager>
Example: contact[egalstad]=Ethan Galstad;24x7;24x7;1;1;1;1;1;1;notify-by-email,notify-by-epager;host-notify-by-epager;egalstad@nospam.extension.umn.edu;pagegalstad@pagenet.com

A contact definition is used to identify someone who should be contacted in the event of a problem on your network. The different arguments to a contact definition are described below.

<contact_name> This is the short name used to identify the contact. It is referenced in contact group definitions. Under the right circumstances, the $CONTACTNAME$ macro will contain this value.

<contact_alias> This is a longer name or description for the contact. Under the rights circumstances, the $CONTACTALIAS$ macro will contain this value.

<svc_notification_period> This is the short name of the time period during which the contact can be notified about service problems or recoveries. You can think of this as an "on call" time for service notifications for the contact. Read the "Time Periods" document in the theory of operation section of the documentation for more information on how
this works and potential problems that may result from improper use.

<host_notification_period> This is the short name of the time period during which the contact can be notified about host problems or recoveries. You can think of this as an "on call" time for host notifications for the contact. Read the "Time Periods" document in the theory of operation section of the documentation for more information on how this
works and potential problems that may result from improper use.

<svc_notify_recovery> This value determines whether or not the contact will be notified of service recoveries. Set this value to 1 if the contact should be notified, 0 if they shouldn't. Note: If a service is configured to not send out notifications upon recovery, contacts will not be notified about recoveries for that service, regardless of this setting.
<svc_notify_critical> This value determines whether or not the contact will be notified if a service is in a critical state. Set this value to 1 if the contact should be notified of critical states, 0 if they shouldn't. Note: If a service is configured to not send out notifications for critical states, contacts will not be notified about critical states for that

service, regardless of this setting.
<svc_notify_warning> This value determines whether or not the contact will be notified if a service is in either a warning or an unknown state. Set this value to 1 if the contact should be notified of warning/unknown states, 0 if they shouldn't. Note: If a service is configured to not send out notifications for warning/unknown states, contacts will

not be notified about warning/unknown states for that service, regardless of this setting.

Host Configuration File Options

http://www.netsaint.org/docs/0_0_6/confighost.html (1 of 3) [6/28/2000 7:59:56 AM]

<host_notify_recovery> This value determines whether or not the contact will be notified if any host recovers. Set this value to 1 if the contact should be notified of hosts that recover, 0 if they shouldn't. Note: If a host is configured to not send out notifications for recoveries, contacts will not be notified when the host recovers, regardless of this
setting.

<host_notify_down> This value determines whether or not the contact will be notified if any host goes down. Set this value to 1 if the contact should be notified of hosts that go down, 0 if they shouldn't. Note: If a host is configured to not send out notifications for down states, contacts will not be notified when the host goes down, regardless
of this setting.

<host_notify_unreachable> This value determines whether or not the contact will be notified if any host becomes unreachable. Set this value to 1 if the contact should be notified of hosts that become unreachable, 0 if they shouldn't. Note: If a host is configured to not send out notifications for unreachable states, contacts will not be notified when the
host becomes unreachable, regardless of this setting.

<service_notify_commands> This is a list of the short names of the commands used to notify the contact of a service problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified.
<host_notify_commands> This is a list of the short names of the commands used to notify the contact of a host problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified.
<email_address> This is the email address for the contact. Depending on how you configure your notification commands, it can be used to send out an alert email to the contact. Under the right circumstances, the $CONTACTEMAIL$ macro will contain this value. fs

<pager> This is the pager number for the contact. It can also be an email address to a pager gateway (i.e. pagejoe@pagenet.com). Depending on how you configure your notification commands, it can be used to send out an alert page to the contact. Under the right circumstances, the $CONTACTPAGER$ macro will contact this
value.

Contact Group Definition
Format: contactgroup[<group_name>]=<group_alias>;<contacts>
Example: contactgroup[nt-admins]=NT Administrators;egalstad,jdoe

A contact group definition is used to group one or more contacts together for the purpose of sending out alert/recovery notifications. When a host or service has a problem or recovers, NetSaint will find the appropriate contact groups to send notifications to, and notify all contacts in those contact groups. This may sound complex, but for most people it
doesn't have to be. It does, however, allow for flexibility in determining who gets notified for particular events. The different arguments to a contact group definition are outlined below.

<group_name> This is a short name used to identify the contact group.
<group_alias> This is a longer name or description used to identify the contact group.
<contacts> This is a list of the short names of contacts that should be included in this group. Multiple contact names should be separated by commas.
Command Definition
Format: command[<command_name>]=<command_line>
Example 1: command[check-host-alive]=/usr/local/netsaint/libexec/check_ping $HOSTADDRESS$ 100 100 1000.0 1000.0
Example 2: command[check_pop]=/usr/local/netsaint/libexec/check_pop $HOSTADDRESS$
Example 3: command[check_disk]=/usr/local/netsaint/libexec/check_disk 85 95 $ARG1$

A command definition is just that. It defines a command. Commands that can be defined include service checks, service notifications, service event handlers, host checks, host notifications, and host event handlers. Command definitions can contain macros, but you must make sure that you include only those macros that are "valid" for the circumstances
when the command will be used. More information on what macros are available and when they are "valid" can be found here. The different arguments to a command definition are outlined below.

<command_name> This is a short name used to identify the command. It is referenced in contact, host, and service definitions.

<command_line> This is what is actually executed by NetSaint when the command is used for service or host checks, notifications, or event handlers. Before the command line is executed, all valid macros are replaced with their respective values. See the documentation on macros for determining when you can use different macros. Note that the
command line is not surrounded in quotes.

Service Definition
Format: service[<host>]=<description>;<volatile>;<check_period>;<max_attempts>;<check_interval>;<retry_interval>;<contactgroups>;<notification_interval>;<notification_period>;<notify_recovery>;<notify_critical>;<notify_warning>;<event_handler>;<check_command>
Example 1: service[rosie]=FTP;0;24x7;3;5;1;nt-admins;120;24x7;1;1;1;;check_ftp
Example 2: service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http2!192.168.0.2!/!88
Example 3: service[real]=Zombie Processes;0;24x7;3;5;1;linux-admins;240;24x7;1;1;1;;check_procs!5!10!Z

A service definition is used to identify a "service" that runs on a host. The term "service" is used very loosely. It can mean an actual service that runs on the host (POP, SMTP, HTTP, etc.) or some other type of metric associated with the host (response to a ping, number of logged in users, free disk space, etc.). The different arguments to a service
definition are outlined below.

<host> This is the short name of the host that the service "runs" on or is associated with.
<description> A description of the service, which may contain spaces, dashes, and colons (semicolons, apostrophes, and quotation marks should be avoided). No two services associated with the same host can have the same description.
<volatile> This field is used to denote whether the service is "volatile". Services are normally not volatile. More information on volatile service and how they differ from normal services can be found here. Set this field to 1 to mark the service as being volatile, 0 to mark it as a normal service.
<check_period> This is the short name of the time period that identifies when this service can be checked. Services checks are scheduled in such a way that they are only checked (or rechecked) during times that are valid within the specified service check time period. See the "Time Periods" documentation in the theory of operation section for

more information on how time periods works and potentials problems with using them improperly.
<max_attempts> This is the number of times that NetSaint will retry the service check if it returns any state other than an OK state. Setting this value to 1 will cause NetSaint to generate an alert (if the service check detected a problem) without retrying the service check again.

<check_interval> This is the number of "time units" to wait before scheduling the next "regular" check of the service. "Regular" checks are those that occur when the service is in an OK state or when the service is in a non-OK state, but has already been rechecked max_attempts number of times. Unless you've changed the interval_length
value in the main configuration file from the default value of 60, this number will mean minutes.

<retry_interval> This is the number of "time units" to wait before scheduling a re-check of the service. Services are rescheduled at the retry interval when the have changed to a non-OK state. Once the service has been retried max_attempts times without a change in its status, it will revert to being scheduled at its "normal" rate as defined by the
check_interval value. Unless you've changed the interval_length value in the main configuration file from the default value of 60, this number will mean minutes.

<contactgroups> This is a comma-delimited list of the short names of contact groups that should be notified about problems or recoveries for this service. If a problem or recovery occurs for this service, NetSaint will attempt to notify all the contacts in each contact group (depending on the notification options that are set below).

<notification_interval> This is the number of "time units" to wait before re-notifying a contact that this service is still at a non-OK state. Unless you've changed the interval_length value in the main configuration file from the default value of 60, this number will mean minutes.
<notification_period> This is the short name of the time period that identifies when notifications about problems or recoveries for this service may be sent out. If a service problem or recovery occurs outside valid times within this time period, notifications will not be sent out. See the "Time Periods" documentation in the theory of operation section

for more information on how time periods works and potentials problems with using them improperly.
<notify_recovery> This value determines whether or not alert notifications will be generated if the service recovers from a non-OK state. Set this value to 1 if the service should generate alerts for recoveries, 0 if it shouldn't. Note: If a contact is configured to not receive recovery notifications, they will not be notified of any recoveries for this

service, regardless of this setting.
<notify_critical> This value determines whether or not alert notifications will be generated if the service is in a CRITICAL state. Set this value to 1 if the service should generate alerts for critical states, 0 if it shouldn't. Note: If a contact is configured to not receive critical notifications, they will not be notified of any critical states for this

service, regardless of this setting.
<notify_warning> This value determines whether or not alert notifications will be generated if the service is in a WARNING or UNKNOWN state. Set this value to 1 if the service should generate alerts for warning/unknown states, 0 if it shouldn't. Note: If a contact is configured to not receive warning/unknown notifications, they will not be

notified of any warning/unknown states for this service, regardless of this setting.
<event_handler> This is the short name of the command that should be run whenever a change in the status of the services is detected (i.e. whenever it goes down or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. If you do not wish to define an event handler for

the service, leave this option blank (as shown in the examples above).
<check_command> This is the command that NetSaint will run in order to check the status of the service. There are three command formats that can be used:

1. "Vanilla" Command: The command name is just the name of command that was previously defined. Example 1 above shows this type of command.
2. Command w/ Arguments: This is basically the same as the "vanilla" command style, but with command options separated by a ! character. Example 2 above shows this type of command. Arguments are separated from the command name (and other arguments) with the ! character. The command should be defined to make

use of the $ARGx$ macros. In Example 2 above, $ARG1$ would resolve to 134.84.92.128, $ARG2$ would resolve to /, and $ARG3$ would resolve to 88 for that particular service. Note: NetSaint will handle a maximum of sixteen command line arguments ($ARG1$ through $ARG16$).
3. "Raw" Command Line: You may optionally specify an actual command line to be executed. To do so you must enclose the entire command line in double quotes. The outer double quotes will be stripped off before the command is actually executed. No macros are processed inside of raw command lines. Note: I haven't

really tested this format too much, but it should work. Remember that the command must return a proper status level. See the documentation on writing plugins for numeric codes for each status level.

Time Period Definition
Format: timeperiod[<timeperiod_name>]=<timeperiod_alias>;<sunday_ranges>;<monday_ranges>;<tuesday_ranges>;<wenesday_ranges>;<thursday_ranges>;<friday_ranges>;<saturday_ranges>;
Example 1: timeperiod[24x7]=All Day, Every Day;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00
Example 2: timeperiod[workhours]="Normal" Working Hours;;09:00-17:00;09:00-17:00;09:00-17:00;09:00-17:00;09:00-17:00;
Example 3: timeperiod[none]=No Time Is A Good Time;;;;;;;
Example 4: timeperiod[nonworkhours]=Non-Work Hours;00:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-24:00

A time period is a list of times during various days that are considered to be "valid" times for notifications and service checks. It consists one or more time periods for each day of the week that "rotate" once the week has come to an end. Exceptions to the normal weekly time range rotations are not suported.

<timeperiod_name> This is a short name used to identify the time period.
<timeperiod_alias> This is a longer name or description used to identify the time period.
<xday_ranges> This is a comma-delimited list of time ranges that are "valid" times for a particular day of the week. Notice that there are seven different days for which you must define time ranges (Sunday through Saturday). Each time range is in the form of HH:MM-HH:MM, where hours are specified on a 24 hour clock. For example,

00:15-24:00 means 12:15am in the morning for this day until 12:20am midnight (a 23 hour, 45 minute total time range). If you leave a particular day's time range blank, it means that there are no "valid" times for that day.

Host Configuration File Options

http://www.netsaint.org/docs/0_0_6/confighost.html (2 of 3) [6/28/2000 7:59:56 AM]

Service Escalation Definition
Format: serviceescalation[<host>;<description>]=<first_notification>-<last_notificiation>;<contact_groups>

Examples:
serviceescalation[real;Zombie Processes]=3-5;linux-admins,managers
serviceescalation[dev;HTTP]=6-0;nt-admins,managers,everyone

A service escalation definition is completely optional and is used to escalate notifications for a particular service. More information on how notification escalations work can be found here.

<host> This is the short name of the host that the service "runs" on or is associated with.
<description> A description of the service, which may contain spaces, dashes, and colons (semicolons, parentheses, and apostrophes are not allowed). No two services associated with the same host can have the same description.
<first_notification> This is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if the service is in a non-OK state long enough for a third escalation to go out.
<last_notification> This is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent out for the specified service. Setting this value to 0 means to keep using this escalation entry forever (no matter how many

notifications go out).
<contact_groups> This is a list of the short names of the contact groups that should be notified when a service notification is escalated. Multiple contact groups should be separated by commas.
Host Group Escalation Definition
Format: hostgroupescalation[<group_name>]=<first_notification>-<last_notificiation>;<contact_groups>

Examples:
hostgroupescalation[nt-servers]=3-5;nt-admins,managers
hostgroupescalation[nt-servers]=6-0;nt-admins,managers,everyone

A host group escalation definition is completely optional and is used to escalate notifications for hosts in a particular hostgroup. More information on how notification escalations work can be found here.

<group_name> This is a short name used to identify the host group (as previously defined in a hostgroup definition) that the escalation should apply to.

<first_notification> This is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if a host in the hostgroup is down or unreachable long enough for a third escalation to go out.
<last_notification> This is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent out for any particular host in the specified hostgroup. Setting this value to 0 means to keep using this escalation entry forever (no

matter how many notifications go out).
<contact_groups> This is a list of the short names of the contact groups that should be notified when a host notification is escalated. Multiple contact groups should be separated by commas.

Host Configuration File Options

http://www.netsaint.org/docs/0_0_6/confighost.html (3 of 3) [6/28/2000 7:59:56 AM]

External Commands

Introduction

NetSaint can process commands from external applications (including CGIs - see the command CGI for an example) and alter various aspects of its
monitoring functions based on the commands it receives.

Enabling External Commands

By default, NetSaint does not check for or process any external commands. If you want to enable external command processing, you'll have to do the
following...

Enable external command checking with the check_external_commands option●

Set the frequency of command checks with the command_check_interval option●

Specify the location of the command file with the command_file option●

Note: If external applications or CGIs will be issuing commands to NetSaint, you will have to grant the user that those processes run as permission to
write to the command file. An outline of how to do this for CGIs can be found in this FAQ.

When Does NetSaint Check For External Commands?
At regular intervals specified by the command_check_interval option in the main configuration file●

Immediately after event handlers are executed. This is in addtion to the regular cycle of external command checks and is done to provide immediate
action if an event handler submits commands to NetSaint.

●

Using External Commands

External commands can be used to accomplish a variety of things while NetSaint is running. Example of what can be done include changing program
modes, temporarily disabling notifications for services and hosts, temporarily disabling service checks, forcing immediate service checks, adding
comments to hosts and services, etc.

External Command Examples

Some example scripts that can be used to issue commands to NetSaint can be found in the eventhandlers/ subdirectory of the NetSaint distribution. You
may have to modify the scripts to accomodate for differences in system command syntaxes, file and directory locations, etc.

Command Format

External commands that are written to the command file have the following format...

[time] command_id;command_arguments

...where time is the time (in time_t format) that the external application or CGI committed the external command to the command file. The various
commands that are available, along with their command_id and a description of their command_arguments, can be found in the table below.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (1 of 6) [6/28/2000 8:00:00 AM]

Implemented Commands

This is a description of the external commands which have been implemented in NetSaint thus far. More commands will be added in future releases. Note
that all time arguments should be specified in time_t format (seconds since the UNIX epoch).

Command ID Command Arguments Command Description
ADD_HOST_COMMENT <host_name>;<persistent>;<author>;<comment> This command is used to associate a comment

with the specified host. The author argument
generally contains the name of the person who
entered the comment. The actual comment
should not contain any semi-colons. The
persistent flag determines whether or not the
comment will survive program restarts (1=save
comment across program restarts, 0=delete
comment on restart).

ADD_SVC_COMMENT <host_name>;<service_description>;<persistent>;<author>;<comment> This command is used to associate a comment
with the specified host. Note that both the host
name and service description are required. The
author argument generally contains the name of
the person who entered the comment. The
actual comment should not contain any
semi-colons. The persistent flag determines
whether or not the comment will survive
program restarts (1=save comment across
program restarts, 0=delete comment on restart).

DEL_HOST_COMMENT <comment_id> This is used to delete a comment having a ID
matching comment_id for the specified host.

DEL_ALL_HOST_COMMENTS <host_name> This is used to delete all comments associated
with the specified host.

DEL_SVC_COMMENT <comment_id> This is used to delete a comment having a ID
matching comment_id for the specified service.

DEL_ALL_SVC_COMMENTS <host_name>;<service_description> This is used to delete all comments associated
with the specified service. Note that both the
host name and service description are required.

DELAY_HOST_NOTIFICATION <host_name>;<next_notification_time> This will delay the next notification about this
host until the time specified by the
next_notification_time argument. This will
have no effect if the host state changes before
the next notification is scheduled to be sent out.

DELAY_SVC_NOTIFICATION <host_name>;<service_description>;<next_notification_time> This will delay the next notification about this
service until the time specified by the
next_notification_time argument. Note that
both the host name and service description are
required. This will have no effect if the service
state changes before the next notification is
scheduled to be sent out. This does not delay
notifications about the host.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (2 of 6) [6/28/2000 8:00:00 AM]

SCHEDULE_SVC_CHECK <host_name>;<service_description>;<next_check_time> This will reschedule the next check of the
specified service for the time specified by the
next_check_time argument. Note that both the
host name and service description are required.

SCHEDULE_HOST_SVC_CHECKS <host_name><next_check_time> This will reschedule the next check of all
services on the specified host for the time
specified by the next_check_time argument.

ENABLE_SVC_CHECK <host_name>;<service_description> This will re-enable checks of the specified
service. Note that both the host name and
service description are required.

DISABLE_SVC_CHECK <host_name>;<service_description> This will temporarily disable checks of the
specified service. Service checks are
automatically re-enabled when NetSaint
restarts. Issuing this command will have the
side effect of temporarily preventing
notifications from being sent out for the
service. It does not prevent notifications about
the host from being sent out.

ENABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to re-enable notifications for the
specified service. Note that both the host name
and service description are required.

DISABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to temporarily disable notifications
from being sent out about the specified service.
Notifications are automatically re-enabled
when NetSaint restarts. Note that both the host
name and service description are required. This
does not disable notifications for the host.

ENABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to re-enable notifications for all
services on the specified host. This does not
enable notifications for the host.

DISABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to temporarily disable notifications
for all services on the specified host. This does
not disable notifications for the host.

ENABLE_HOST_SVC_CHECKS <host_name> This will re-enable checks of all services on the
specified host. If one or more services were in a
non-OK state when they were disabled,
contacts may receive notifications if the
service(s) recover after the checks are
re-enabled.

DISABLE_HOST_SVC_CHECKS <host_name> This will temporarily disable checks of all
services on the specified host. Service checks
are automatically re-enabled when NetSaint
restarts. Issuing this command will have the
side effect of temporarily preventing
notifications from being sent out for any of the
affected services. It does not prevent
notifications about the host from being sent out.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (3 of 6) [6/28/2000 8:00:00 AM]

ENABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for
this host. Note that this does not enable
notifications for the services associated with
this host.

DISABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for
this host. Notifications are automatically
re-enabled when NetSaint restarts. Note that
this does not disable notifications for the
services associated with this host.

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST <host_name> This will enable notifications for all hosts and
services "beyond" the host specified by the
host_name argument (from the view of
NetSaint). This command is most often used in
conjunction with redundant monitoring hosts.

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST <host_name> This will temporarily disable notifications for
all hosts and services "beyond" the host
specified by the host_name argument (from the
view of NetSaint). Notifications are
automatically re-enabled when NetSaint
restarts. This command is most often used in
conjunction with redundant monitoring hosts.

ENTER_STANDBY_MODE <execution_time> This will change the current program mode to
Standby at the time specified by the execution
time argument.

ENTER_ACTIVE_MODE <execution_time> This will change the current program mode to
Active at the time specified by the execution
time argument.

SHUTDOWN_PROGRAM <execution_time> This will cause NetSaint to shutdown at the
time specified by the execution_time argument.
Note: NetSaint cannot be restarted via the web
interface once it has been shutdown.

RESTART_PROGRAM <execution_time> This will cause NetSaint to flush all
configuration state information, re-read all the
config files, and restart monitoring at the time
specified by the execution_time argument

PROCESS_SERVICE_CHECK_RESULT <host_name>;<service_description>;<return_code>;<plugin_output> This command is used to submit check results
for a particular service to NetSaint. These
"passive" checks are acted upon in the same
manner as normal "active" checks. More
information on passive service checks can be
found here.

SAVE_STATE_INFORMATION <execution_time> This will force NetSaint to dump current state
information for all services and hosts to the file
specified by the state_retention_file variable.
You must enable the retain_state_information
option for this to work.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (4 of 6) [6/28/2000 8:00:00 AM]

READ_STATE_INFORMATION <execution_time> This will force NetSaint to read previously
saved state information for all services and
hosts from the file specified by the
state_retention_file variable. You must enable
the retain_state_information option for this to
work.

START_EXECUTING_SVC_CHECKS This is used to resume the execution of service
checks. The execution of service checks may
have been stopped at an earlier time by either
receiving a
STOP_EXECUTING_SVC_CHECKS
command, or by setting the
execute_service_checks option in the main
config file to 0. Most often used when
implementing redundant monitoring hosts.

STOP_EXECUTING_SVC_CHECKS This is used to stop the execution of service
checks. When service checks are not being
executed, NetSaint will not keep requeuing
checks for a later time, but will not actually
execute any checks. This essentially puts
NetSaint into a "sleep" mode, as far as
monitoring is concerned. Most often used when
implementing redundant monitoring hosts.

START_ACCEPTING_PASSIVE_SVC_CHECKS This is used to resume the acceptance of
passive service checks for all services. The
acceptance of passive service checks may have
been stopped at an earlier time by either
receiving a
STOP_ACCEPTING_PASSIVE_SVC_CHECKS
command, or by setting the
accept_passive_service_checks option in the
main config file to 0. If passive checks have
been disabled for specific services using the
DISABLE_PASSIVE_SVC_CHECKS
command, passive checks will not be accepted
for those services, but will for all others.

STOP_ACCEPTING_PASSIVE_SVC_CHECKS This is used to disable the acceptance of
passive service checks for all services.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (5 of 6) [6/28/2000 8:00:00 AM]

ENABLE_PASSIVE_SVC_CHECKS <host_name>;<service_description> This is used to resume the acceptance of
passive service checks for a specific service.
The acceptance of passive checks may have
been disabled for a service at an earlier time by
receiving a
DISABLE_PASSIVE_SVC_CHECKS
command. If passive checks have been disabled
for all services either by using the
STOP_ACCEPTING_PASSIVE_SVC_CHECKS
command or by setting the
accept_passive_service_checks option in the
main config file to 0, passive checks will not be
accepted for this service.

DISABLE_PASSIVE_SVC_CHECKS <host_name>;<service_description> This is used to disable the acceptance of
passive service checks for a specific service.

External Commands

http://www.netsaint.org/docs/0_0_6/extcommands.html (6 of 6) [6/28/2000 8:00:00 AM]

Passive Service Checks

Introduction

Beginning with release 0.0.6, NetSaint can now process service check results that are submitted by external
applications. Service checks which are performed and submitted to NetSaint by external apps are called passive
checks. Passive checks can be contrasted with active checks, which are service checks that have been initiated
by NetSaint.

Why The Need For Passive Checks?

Passive checks are useful for monitoring services that are:
located behind a firewall, and can therefore not be checked actively from the host running NetSaint●

asynchronous in nature and can therefore not be actively checked in a reliable manner (e.g. SNMP traps,
security alerts, etc.)

●

How Do Passive Checks Work?

The only real difference between active and passive checks is that active checks are initiated by NetSaint, while
passive checks are performed by external applications. Once an external application has performed a service
check (either actively or by having received an synchronous event like an SNMP trap or security alert), it
submits the results of the service "check" to NetSaint through the external command file.

The next time NetSaint processes the contents of the external command file, it will place the results of all
passive service checks into a queue for later processing. The same queue that is used for storing results from
active checks is also used to store the results from passive checks.

NetSaint will periodically execute a service reaper event and scan the service check result queue. Each service
check result, regardless of whether the check was active or passive, is processed in the same manner. The
service check logic is exactly the same for both types of checks. This provides a seamless method for handling
both active and passive service check results.

How Do External Apps Submit Service Check Results?

External applications can submit service check results to NetSaint by writing a
PROCESS_SERVICE_CHECK_RESULT external command to the external command file.

The format of the command is as follows:

[<timestamp>]
PROCESS_SERVICE_CHECK_RESULT;<host_name>;<description>;<return_code>;<plugin_output>

where...
timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was
perfomed (or submitted). Please note the single space after the right bracket.

●

host_name is the short name of the host associated with the service in the service definition●

description is the description of the service as specified in the service definition●

return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, -1=UNKNOWN)●

Passive Service Checks

http://www.netsaint.org/docs/0_0_6/passivechecks.html (1 of 3) [6/28/2000 8:00:03 AM]

plugin_output is the text output of the service check (i.e. the plugin output)●

Note that in order to submit service checks to NetSaint, a service must have alread been defined in the host
configuration file! NetSaint will ignore all check results for services that had not been configured before it was
last (re)started.

An example shell script of how to submit passive service check results to NetSaint can be found in the
documentation on volatile services.

Submitting Passive Service Check Results From Remote Hosts

If an application that resides on the same host as NetSaint is sending passive service check results, it can simply
write the results directly to the external command file as outlined above. However, applications on remote hosts
can't do this so easily. In order to allow remote hosts to send passive service check results to the host that runs
NetSaint, I've developed the nsca addon. The addon consists of a daemon that runs on the NetSaint hosts and a
client that is executed from remote hosts. The daemon will listen for connections from remote clients, perform
some basic validation on the results being submitted, and then write the check results directly into the external
command file (as described above). More information on the nsca addon can be found here...

Using Both Active And Passive Service Checks

Unless you're implementing a distributed monitoring environment with the central server accepting only
passive service checks (and not performing any active checks), you'll probably be using both types of checks in
your setup. As mentioned before, active checks are more suited for services that lend themselves to periodic
checks (availability of an FTP or web server, etc), whereas passive checks are better off at handling
asynchronous events that occur at variable intervals (security alerts, etc.).

The image below gives a visual representation of how active and passive service checks can both be used to
monitor network resources (click on the image for a larger version).

The orange bubbles on the right side of the image are third-party applications that submit passive check results
to NetSaint's external command file. One of the applications resides on the same host as NetSaint, so it can
write directly to the command file. The other application resides on a remote host and makes used of the nsca
client program and daemon to transfer the passive check results to NetSaint.

The items on the left side of the image represent active service checks that NetSaint is performing. I've shown
how the checks can be made for local resources (disk usage, etc.), "exposed" resources on remote hosts (web
server, FTP server, etc.), and "private" resources on remote hosts (remote host disk usage, processor load, etc.).
In this example, the private resources on the remote hosts are actually checked by making use of the nrpe
addon, which facilitates the execution of plugins on remote hosts.

Passive Service Checks

http://www.netsaint.org/docs/0_0_6/passivechecks.html (2 of 3) [6/28/2000 8:00:03 AM]

Passive Service Checks

http://www.netsaint.org/docs/0_0_6/passivechecks.html (3 of 3) [6/28/2000 8:00:03 AM]

Volatile Services

Introduction

Beginning with release 0.0.6 of NetSaint, service definitions have been extended to allow for a
distinction between "normal" services and "volatile" services. The <volatile> option in each service
definition allows you to specify whether a specific service is volatile or not. For most people, the
majority of all monitored services will be non-volatile (i.e. "normal"). However, volatile services can be
very useful when used properly...

What Are They Useful For?

Volatile services are useful for monitoring...
things that automatically reset themselves to an "OK" state each time they are checked●

events such as security alerts which require attention every time there is a problem (and not just
the first time)

●

What's So Special About Volatile Services?

Volatile services differ from "normal" services in three important ways. Each time they are checked
when they are in a hard non-OK state, and the check returns a non-OK state (i.e. no state change has
occurred)...

the non-OK service state is logged●

contacts are notified about the problem (if that's what should be done)●

the event handler for the service is run (if one has been defined)●

These events normally only occur for services when they are in a non-OK state and a hard state change
has just occurred. In other words, they only happen the first time that a service goes into a non-OK state.
If future checks of the service result in the same non-OK state, no hard state change occurs and none of
the events mentioned take place again.

The Power Of Two

If you combine the features of volatile services and passive service checks, you can do some very useful
things. Examples of this include handling SNMP traps, security alerts, etc.

How about an example... Let's say you're running Psionic Software's PortSentry product (which is free,
by the way) to detect port scans on your machine and automatically firewall potential intruders. If you
want to let NetSaint know about port scans, you could do the following..

In NetSaint:
Configure a service called Port Scans and associate it with the host that PortSentry is running on.●

Set the <max_attempts> option in the service definition to 1. This will tell NetSaint to immediate
force the service into a hard state when a non-OK state is reported.

●

Volatile Services

http://www.netsaint.org/docs/0_0_6/volatileservices.html (1 of 2) [6/28/2000 8:00:05 AM]

http://www.psionic.com/
http://www.psionic.com/abacus/portsentry

Set the <check_time> option in the service definition to a timeperiod that contains no valid time
ranges. This will prevent NetSaint from ever actively checking the service. Even though the
service check will get scheduled, it will never actually be checked.

●

In PortSentry:
Edit your PortSentry configuration file (portsentry.conf), define a command for the
KILL_RUN_CMD directive as follows:

KILL_RUN_CMD="/usr/local/netsaint/libexec/eventhandlers/submit_check_result <host_name>
'Port Scans' 2 'Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.'"

Make sure to replace <host_name> with the short name of the host that the service is associated
with.

●

Create a shell script in the /usr/local/netsaint/libexec/eventhandlers directory named
submit_check_result. The contents of the shell script should be something similiar to the following...

 #!/bin/sh

 # Write a command to the NetSaint command file to cause
 # it to process a service check result

 echocmd="/bin/echo"

 CommandFile="/usr/local/netsaint/var/rw/netsaint.cmd"

 # get the current date/time in seconds since UNIX epoch
 datetime=`date +%s`

 # create the command line to add to the command file
 cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

 # append the command to the end of the command file
 `$echocmd $cmdline >> $CommandFile`

Note that if you are running PortSentry as root, you will have to make additions to the script to reset file
ownership and permissions so that NetSaint and the CGIs can read/modify the command file. Details on
permissions/ownership of the command file can be found here.

So what happens when PortSentry detects a port scan on the machine?
It blocks the host (this is a function of the PortSentry software)●

It executes the submit_check_result shell script to send the security alert info to NetSaint●

NetSaint reads the command file, recognized the port scan entry as a passive service check●

NetSaint processes the results of the service by logging the CRITICAL state, sending notifications
to contacts (if configured to do so), and executes the event handler for the Port Scans service (if
one is defined)

●

Volatile Services

http://www.netsaint.org/docs/0_0_6/volatileservices.html (2 of 2) [6/28/2000 8:00:05 AM]

Notification Escalations

Introduction

Beginning with release 0.0.6, NetSaint supports optional escalation of contact notifications for specific
services or hosts within specific hostgroups. I'll explain quickly how they work, although they should be
fairly self-explanatory...

Service Notification Escalations

Escalation of service notifications is accomplished by defining service escalation definitions in the host
config file. Service escalation definitions are used to escalate notifications for a particular service.

Host Notification Escalations

Escalation of host notifications is accomplished by defining hostgroup escalation definitions in the host
config file. Hostgroup escalation definitions are used to escalate host notifications for all hosts in a
particular hostgroup. The examples I provide below all use service escalation definitions, but hostgroup
escalations work the same way (except for the fact that they are used for host notifications and not
service notifications).

When Are Notifications Escalated?

Notifications are escalated if and only if one or more escalation definitions matches the current
notification that is being sent out. If a host or service notification does not have any valid escalation
definitions that applies to it, the contact group(s) specified in either the host group or service definition
will be used for the notification. Look at the example below:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers
serviceescalation[dev;HTTP]=6-10;nt-admins,managers,everyone

Notice that there are "holes" in the notification escalation definitions. In particular, notifications 1 and 2
are not handled by the escalations, nor are any notifications beyond 10. For the first and second
notification, as well as all notifications beyond the tenth one, the default contact groups specified in the
service definition are used. In the example above, this would mean that the nt-admins contact group
would be the only group that was notified during these "holes".

Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were
members of "lower" escalations (i.e. those with lower notification number ranges) should also be
included in "higher" escalation definitions. This should be done to ensure that anyone who gets notified
of a problem continues to get notified as the problem is escalated. Example:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers

Notification Escalations

http://www.netsaint.org/docs/0_0_6/escalations.html (1 of 2) [6/28/2000 8:00:06 AM]

serviceescalation[dev;HTTP]=6-0;nt-admins,managers,everyone

The default contact group for the service 'HTTP' on host 'dev' is the group named nt-admins. The first (or
"lowest") escalation level includes both the nt-admins and managers contact groups. The last (or
"highest") escalation level includes the nt-admins, managers, and everyone contact groups. Notice that
the nt-admins contact group is included in both escalation definitions. This is done so that they continue
to get paged if there are still problems after the first two service notifications are sent out. The managers
contact group first appears in the "lower" escalation definition - they are first notified when the third
problem notification gets sent out. We want the managers group to continue to be notified if the problem
continues past five notifications, so they are also included in the "higher" escalation definition.

Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

serviceescalation[dev;HTTP]=3-5;nt-admins,managers
serviceescalation[dev;HTTP]=4-0;on-call-support

In the example above:
The nt-admins and managers contact groups get notified on the third notification●

All three contact groups get notified on the fourth and fifth notifications●

Only the on-call-support contact group gets notified on the sixth (or higher) notification●

Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations.
Take the following example:

serviceescalation[dev;HTTP]=3-5;nt-admins,managers
serviceescalation[dev;HTTP]=4-0;on-call-support

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified?
The recovery is actually the fourth notification that gets sent out. However, the escalation code is smart
enough to realize that only those people who were notified about the problem on the third notification
should be notified about the recovery. In this case, the nt-admins and managers contact groups would be
notified of the recovery.

Notification Escalations

http://www.netsaint.org/docs/0_0_6/escalations.html (2 of 2) [6/28/2000 8:00:06 AM]

Distributed Monitoring

Introduction

Beginning with release 0.0.6, NetSaint can optionally be configured to support distributed monitoring of network services and
resources. I'll try to briefly explan how this can be accomplished...

Goals

The goal in the distributed monitoring environment that I will describe is to offload the overhead (CPU usage, etc.) of
performing service checks from a "central" server onto one or more "distributed" servers. Most small to medium sized shops
will not have a real need for setting up such an environment. However, when you want to start monitoring hundreds or even
thousands of hosts (and several times that many services) using NetSaint, this becomes quite important.

Reference Diagram

The diagram below should help give you a general idea of how distributed monitoring works with NetSaint. I'll be referring to
the items shown in the diagram as I explain things...

Central Server vs. Distributed Servers

When setting up a distributed monitoring environment with NetSaint, there are differences in the way the central and
distributed servers are configured. I'll show you how to configure both types of servers and explain what effects the changes

Distributed Monitoring

http://www.netsaint.org/docs/0_0_6/distributed.html (1 of 5) [6/28/2000 8:00:10 AM]

being made have on the overall monitoring. For starters, lets describe the purpose of the different types of servers...

The function of a distributed server is to actively perform checks all the services you define for a "cluster" of hosts. I use the
term "cluster" loosely - it basically just mean an arbitrary group of hosts on your network. Depending on your network layout,
you may have several cluters at one physical location, or each cluster may be separated by a WAN, its own firewall, etc. The
important thing to remember to that for each cluster of hosts (however you define that), there is one distributed server that runs
NetSaint and monitors the services on the hosts in the cluster. A distributed server is usually a bare-bones installation of
NetSaint. It doesn't have to have the web interface installed, send out notifications, run event handler scripts, or do anything
other than execute service checks if you don't want it to. More detailed information on configuring a distributed server comes
later...

The purpose of the central server is to simply listen for service check results from one or more distributed servers. Even
though services are actively checked from the central server, the active checks are only performed at long intervals (as will be
described later), so lets just say that the central server only accepts passive check for now. Since the central server is obtaining
passive service check results from one or more distributed servers, it serves as the focal point for all monitoring logic (i.e. it
sends out notifications, runs event handler scripts, determines host states, has the web interface installed, etc).

Obtaining Service Check Information From Distributed Monitors

Okay, before we go jumping into configuration detail we need to know how to send the service check results from the
distributed servers to the central server. I've already discussed how to submit passive check results to NetSaint from same host
that NetSaint is running on (as described in the documentation on passive checks), but I haven't given any info on how to
submit passive check results from other hosts.

In order to facilitate the submission of passive check results to a remote host, I've written the nsca addon. The addon consists
of two pieces. The first is a client program (send_nsca) which is run from a remote host and is used to send the service check
results to another server. The second piece is the nsca daemon (nsca) which either runs as a standalone daemon or under inetd
and listens for connections from client programs. Upon receiving service check information from a client, the daemon will
sumbit the check information to NetSaint (on the central server) by inserting a PROCESS_SVC_CHECK_RESULT command
into the external command file, along with the check results. The next time NetSaint checks for external commands, it will find
the passive service check information that was sent from the distributed server and process it. Easy, huh?

Distributed Server Configuration

So how exactly is NetSaint configured on a distributed server? Basically, its just a bare-bones installation. You don't need to
install the web interface or have notifications sent out from the server, as this will all be handled by the central server.

Key configuration changes:
Only those services and hosts which are being monitored directly by the distributed server are defined in the host
configuration file.

●

The distributed server has its initial program mode set to STANDBY. This will prevent any notifications from being sent
out by the server.

●

The distributed server is configured to obsess over services.●

The distributed server has an ocsp command defined (as described below).●

In order to make everything come together and work properly, we want the distributed server to report the results of all service
checks to NetSaint. We could use event handlers to report changes in the state of a service, but that just doesn't cut it. In order
to force the distributed server to report all service check results, you must enabled the obsess_over_services option in the main
configuration file and provide a ocsp_command to be run after every service check. We will use the ocsp command to send the
results of all service checks to the central server, making use of the send_nsca client and nsca daemon (as described above) to
handle the tranmission.

In order to accomplish this, you'll need to define an ocsp command like this:

ocsp_command=submit_check_result

Distributed Monitoring

http://www.netsaint.org/docs/0_0_6/distributed.html (2 of 5) [6/28/2000 8:00:10 AM]

The command definition for the submit_check_result command looks something like this:

command[submit_check_result]=/usr/local/netsaint/libexec/eventhandlers/submit_check_result $HOSTNAME$
'$SERVICEDESC$' $SERVICESTATE$ '$OUTPUT$'

The submit_check_result shell scripts looks something like this (replace central_server with the IP address of the central
server):

 #!/bin/sh

 # Arguments:
 # $1 = host_name (Short name of host that the service is
 # associated with)
 # $2 = svc_description (Description of the service)
 # $3 = state_string (A string representing the status of
 # the given service - "OK", "WARNING", "CRITICAL"
 # or "UNKNOWN")
 # $4 = plugin_output (A text string that should be used
 # as the plugin output for the service checks)
 #

 # Convert the state string to the corresponding return code
 return_code=-1

 case "$3" in
 OK)
 return_code=0
 ;;
 WARNING)
 return_code=1
 ;;
 CRITICAL)
 return_code=2
 ;;
 UNKNOWN)
 return_code=-1
 ;;
 esac

 # pipe the service check info into the send_nsca program, which
 # in turn transmits the data to the nsca daemon on the central
 # monitoring server

 /bin/echo -e "$1\t$2\t$return_code\t$4\n" | /usr/local/netsaint/bin/send_nsca
central_server -c /usr/local/netsaint/var/send_nsca.cfg

The script above assumes that you have the send_nsca program and it configuration file (send_nsca.cfg) located in the
/usr/local/netsaint/bin/ and /usr/local/netsaint/var/ directories, respectively.

That's it! We've sucessfully configured a remote host running NetSaint to act as a distributed monitoring server. Let's go over
exactly what happens with the distributed server and how it sends service check results to NetSaint (the steps outlined below
correspond to the numbers in the reference diagram above):

After the distributed server finishes executing a service check, it executes the command you defined by the
ocsp_command variable. In our example, this is the /usr/local/netsaint/libexec/eventhandlers/submit_check_result script.
Note that the definition for the submit_check_result command passed four pieces of information to the script: the name

1.

Distributed Monitoring

http://www.netsaint.org/docs/0_0_6/distributed.html (3 of 5) [6/28/2000 8:00:10 AM]

of the host the service is associated with, the service description, the return code from the service check, and the plugin
output from the service check.
The submit_check_result script pipes the service check information (host name, description, return code, and output) to
the send_nsca client program.

2.

The send_nsca program transmits the service check information to the nsca daemon on the central monitoring server.3.
The nsca daemon on the central server takes the service check information and writes it to the external command file for
later pickup by NetSaint.

4.

The NetSaint process on the central server reads the external command file and processes the passive service check
information that originated from the distributed monitoring server.

5.

Central Server Configuration

We've looked at hot distributed monitoring servers should be configured, so let's turn to the central server. For all intensive
purposes, the central is configured as you would normally configure a standalone server. It is setup with:

The web interface (optional, but recommended)●

Notifications (optional, but recommended)●

Event handlers (optional)●

Active service checks enabled (required)●

External command checks enabled (required)●

Passive service checks enabled (required)●

There are two other very important things that you need to keep in mind when configuring the central server:
The central server must have service definitions for all services that are being monitored by all the distributed servers.
NetSaint will ignore passive check results if they do not correspond to a service that has been defined.

●

The normal check_interval argument for each service definition should be set to a long time interval (i.e. 24 hours or a
week).

●

It is important that you set the check_interval argument for each service definition to a long interval. This will ensure that
active service checks account for only a minimal load on the central server. We don't want to disable service checks, as it will
be necessary to sometimes force NetSaint to actively check services (as discussed below).

That's it! Easy, huh?

Problems With Passive Checks

For all intensive purposes we can say that the central server is relying solely on passive checks for monitoring. While it does
perform active checks of all services, it only does so at very long intervals, so lets disregard that fact. The main problem with
relying completely on passive checks for monitoring is the fact that NetSaint must rely on something else to provide the
monitoring data. What if the remote host that is sending in passive check results goes down or becomes unreachable? If
NetSaint isn't actively checking the services on the host, how will it know that there is a problem?

We can protect against this type of problem by using another addon to monitoring incoming passive check results...

Watchdog Daemon

In order to protect against situations where remote hosts may stop sending passive service checks into the central monitoring
server, I've developed the pscwatch daemon. The daemon's sole purpose in life is to ensure that service checks are being either
performed actively by the central server or being provided passively be distributed servers on a regular basis.

If the pscwatch daemon detects that a service check has not been performed within a given threshold of time, it will send a
command to NetSaint via the external command file telling it to schedule an immediate active check of the service. When
NetSaint performs an active check of the service, it will be able to tell if there is a real problem or not. Problem solved.

Note: If service checks are disabled, NetSaint will refuse to actively perform a service check. This is the reason why we don't
want to disable active checks on the central server. Instead, we just set the normal check interval for all services to a very long

Distributed Monitoring

http://www.netsaint.org/docs/0_0_6/distributed.html (4 of 5) [6/28/2000 8:00:10 AM]

time period.

Combining Distributed Monitoring With Redundancy

Nothing here yet...

Distributed Monitoring

http://www.netsaint.org/docs/0_0_6/distributed.html (5 of 5) [6/28/2000 8:00:10 AM]

Network Outages

Introduction

The outages CGI was added with release 0.0.6 to help pinpoint the cause of network outages. For small networks this CGI may not be particularly useful, but for larger ones it will be.
Pinpointing the cause of outages will help admins to more quickly find and resolve problems which are causing the biggest impact on the network.

It should be noted that the outages CGI will not attempt to find the exact cause of the problem, but will rather locate the hosts on your network which seem to be causing the most
problems. Delving into the problem at a deeper level is left to the user, as there are any number of things which might actually be the cause of the problem.

Diagrams

The diagrams below help to show how the outages CGI goes about determining the cause of network outages. You can click on either image for a larger version...

Diagram 1 Diagram 2

This diagram will serve as the basis for our example. All hosts shows in red are either
down or unreachable (from the view of NetSaint). All other hosts are up.

This diagram pinpoints the causes of the network outages (from the view of NetSaint),
and shows various groups of hosts which are affected by the outages.

Determining The Cause Of Network Outages

So how does the outages CGI determine which hosts are the source of problems? "Problem" hosts must be either in a DOWN or UNREACHABLE state and at least one of their
immediate parent hosts must be UP. Hosts which fit this criteria are flagged as being potential problem hosts.

In order to determine whether these flagged hosts are causing network outages, we must performs some other tests...

If all of the immediate child hosts of one of these flagged hosts is DOWN or UNREACHABLE and has no immediate parent host that is up, the flagged host is the cause of a network
outage. If even one of the immediate children of a flagged host does not pass this test, then the flagged host is not the cause of a network outage.

Determining The Effects Of Network Outages

Network Outages

http://www.netsaint.org/docs/0_0_6/networkoutages.html (1 of 2) [6/28/2000 8:00:12 AM]

Along with telling you what hosts are causing problem on your network, the outages CGI will also tell you how many hosts and services are affected by a particular problem host. How is
this determined? Take a look at diagram 2 above...

From the diagram it is clear that host 1 is blocking two child hosts (in domain A). Host 2 is solely responsbile for blocking only itself (domain B) and host 3 is solely responsibly for
blocking 7 hosts (domain C). The outage effects of the two hosts in domain D are "shared" between hosts 2 and 3, since it is unclear as to which host is actually the cause of the outage. If
either host 2 or 3 was UP, the these hosts might not be blocked.

The numbers of affected hosts for each problem host are as follows (the problem host is also included in these figures):
Host 1: 3 affected hosts●

Host 2: 3 affected hosts●

Host 3: 10 affected hosts●

Ranking Problems Based On Severity Level

The outages CGI will display all problem hosts, whether they are causing network outages or not. However, the CGI will tell you how many of the problem hosts (if any) are causing
network outages.

In order to display the problem hosts in a somewhat useful manner, they are sorted by the severity of the effect they are having on the network. The severity level is determined by two
things: The number of hosts which are affected by problem host and the number of services which are affected. Hosts hold a higher weight than services when it comes to calculating
severity. The current code sets this weight ratio at 4:1 (i.e. hosts are 4 times more important than individual services).

Assuming that all hosts in diagram 2 have an equal number of services associated with them, host 3 would be ranked as the most severe problem, while hosts 1 and 2 would have the same
severity level.

Network Outages

http://www.netsaint.org/docs/0_0_6/networkoutages.html (2 of 2) [6/28/2000 8:00:12 AM]

Main Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:
Lines that start with a '#' character are taken to be comments and are not processed1.
Variables names must begin at the start of the line - no white space is allowed before the name2.
Variable names are case-sensitive3.

Sample Configuration

A sample main configuration file can be created by running the 'make config' command. The default
name of the main configuration file is netsaint.cfg - look for it in the NetSaint distribution directory or in
the etc/ subdirectory of your installation.

Index

Log file
Host configuration file
Status file
Temp file

Program mode

Service check execution option
Passive service check acceptance option
Event handler option

Log rotation method
Log archive path

External command check option
External command check interval
External command file

Comment file
Lock file

State retention option
State retention file

Log severity level

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (1 of 12) [6/28/2000 8:00:21 AM]

Syslog logging option
Syslog severity level
Notification logging option
Service check retry logging option
Host retry logging option
Event handler logging option
Initial state logging option
External command logging option
Passive service check logging option

Global host event handler
Global service event handler

Inter-check sleep time
Inter-check delay method
Service interleave factor
Maximum concurrent service checks
Service reaper frequency
Timing interval length

Agressive host checking option

Service check timeout
Host check timeout
Event handler timeout
Notification timeout
Obsessive compulsive service processor timeout

Obsess over services option
Obsessive compulsive service processor command

Administrator email address
Administrator pager

Log File
Format: log_file=<file_name>
Example: log_file=/usr/local/netsaint/var/netsaint.log

This variable specifies where NetSaint should create its main log file. This should be the first variable
that you define in your configuration file, as NetSaint will try to write errors that it finds in the rest of
your configuration data to this file. This file is never deleted, pruned or rotated by NetSaint. I suggest
adding a cron job to do log rotations every month or so (more often if you have a lot of alarms).

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (2 of 12) [6/28/2000 8:00:21 AM]

Host Configuration File
Format: cfg_file=<file_name>
Example: cfg_file=/usr/local/netsaint/etc/hosts.cfg

This specifies the host configuration file that NetSaint should use for monitoring. Host configuration files
contain configuration data for hosts, host groups, contacts, contact groups, services, commands, etc. You
can split your configuration information into several files and specify multiple cfg_file= statements to
include each of them.
Status File
Format: status_file=<file_name>
Example: status_file=/usr/local/netsaint/var/status.log

This is the file that NetSaint uses to store the current status of all monitored services. The status of all
hosts associated with the service you monitor are also recorded here. This file is used by the "status" CGI
so that current monitoring status can be reported via a web interface. The CGIs must have read access to
this file in order to function properly. This file is deleted every time NetSaint stops and recreated when it
starts.
Temp File
Format: temp_file=<file_name>
Example: temp_file=/usr/local/netsaint/var/netsaint.tmp

This is the temporary file into which NetSaint redirects the standard output and error from the execution
of plugins. The output from the plugins is scooped from the temp file and used for both display in the
"status" CGI output and use in notification macros. This file is deleted after the plugin has been executed.
This file is also used as a scratch file when NetSaint updates the status log.

Note: On most systems, the temp file will have to reside on the same filesystem as the status file, the log
file, and the log file archive path.

Program Mode
Format: program_mode=<a/s>
Example: program_mode=a

This is the intial program mode that NetSaint should use when it starts or restarts. More information on
program modes can be found here. Values are as follows:

a = Active mode (default)●

s = Standby mode●

Service Check Execution Option
Format: execute_service_checks=<0/1>
Example: execute_service_checks=1

This option determines whether or not NetSaint will execute service checks when it initially (re)starts. If
this option is disabled, NetSaint will not actively execute any service checks and will remain in a sort of
"sleep" mode (it can still accept passive checks unless you've disabled them). This option is most often

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (3 of 12) [6/28/2000 8:00:21 AM]

used when configuring backup monitoring servers, as described in the documentation on redundancy.
Values are as follows:

0 = Don't execute service checks●

1 = Execute service checks (default)●

Passive Service Check Acceptance Option
Format: accept_passive_service_checks=<0/1>
Example: accept_passive_service_checks=1

This option determines whether or not NetSaint will accept passive service checks when it initially
(re)starts. If this option is disabled, NetSaint will not accept any passive service checks. Values are as
follows:

0 = Don't accept passive service checks●

1 = Accept passive service checks (default)●

Event Handler Option
Format: enable_event_handlers=<0/1>
Example: enable_event_handlers=1

This option determines whether or not NetSaint will run event handlers when it initially (re)starts. If this
option is disabled, NetSaint will not run any host or service event handlers. Values are as follows:

0 = Disable event handlers●

1 = Enable event handlers (default)●

Log Rotation Method
Format: log_rotation_method=<n/h/d/w/m>
Example: log_rotation_method=d

This is the rotation method that you would like NetSaint to use for your log file. Values are as follows:
n = None (don't rotate the log - this is the default)●

h = Hourly (rotate the log at the top of each hour)●

d = Daily (rotate the log at midnight each day)●

w = Weekly (rotate the log at midnight on Saturday)●

m = Monthly (rotate the log at midnight on the last day of the month)●

Log Archive Path
Format: log_archive_path=<path>
Example: log_archive_path=/usr/local/netsaint/var/archives/

This is the directory where NetSaint should place log files that have been rotated. This option is ignored
if you choose to not use the log rotation functionality.
External Command Check Option
Format: check_external_commands=<0/1>
Example: check_external_commands=1

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (4 of 12) [6/28/2000 8:00:21 AM]

This option determines whether or not NetSaint will check the command file for internal commands it
should execute. This option must be enabled if you plan on using the command CGI to issue commands
via the web interface. Third party programs can also issue commands to NetSaint by writing to the
command file, provided proper rights to the file have been granted as outlined in this FAQ. More
information on external commands can be found here.

0 = Don't check external commands (default)●

1 = Check external commands●

External Command Check Interval
Format: command_check_interval=<xxx>
Example: command_check_interval=1

This is the number of "time units" to wait between external command checks. Unless you've changed the
interval_length value (as defined below) from the default value of 60, this number will mean minutes.
Each time NetSaint checks for external commands it will read and process all commands present in the
command file before continuing on with its other duties. More information on external commands can be
found here.

External Command File
Format: command_file=<file_name>
Example: command_file=/usr/local/netsaint/var/rw/netsaint.cmd

This is the file that NetSaint will check for external commands to process. The command CGI writes
commands to this file. Other third party programs can write to this file if proper file permissions have
been granted as outline in this FAQ. More information on external commands can be found here.

Comment File
Format: comment_file=<file_name>
Example: comment_file=/usr/local/netsaint/var/comment.log

This is the file that NetSaint will use for storing service and host comments. Comments can be viewed
and added for both hosts and services through the extended information CGI.

Lock File
Format: lock_file=<file_name>
Example: lock_file=/tmp/netsaint.lock

This option specifies the location of the lock file that NetSaint should create when it runs as a daemon
(when started with the -d command line argument). This file contains the process id (PID) number of the
running NetSaint process.
State Retention Option
Format: retain_state_information=<0/1>
Example: retain_state_information=1

This option determines whether or not NetSaint will retain state information for hosts and services
between program restarts. If you enable this option, you should supply a value for the state_retention_file

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (5 of 12) [6/28/2000 8:00:21 AM]

variable. When enabled, NetSaint will save all state information for hosts and service before it shuts
down (or restarts) and will read in previously saved state information when it starts up again.

0 = Don't retain state information (default)●

1 = Retain state information●

State Retention File
Format: state_retention_file=<file_name>
Example: state_retention_file=/usr/local/netsaint/var/status.sav

This is the file that NetSaint will use for storing service and host state information before it shuts down.
When NetSaint is restarted it will use the information stored in this file for setting the initial states of
services and hosts before it starts monitoring anything. This file is deleted after NetSaint reads in initial
state information when it (re)starts. In order to make NetSaint retain state information between program
restarts, you must enable the retain_state_information option.

Log Severity Level
Format: log_level=<1-2>
Example: log_level=1

This is the level of severity needed for service messages to be logged to the main log file. Values are as
follows:

1 = Log services which are in WARNING, UNKNOWN, or CRITICAL states.●

2 = Log only services which are in a CRITICAL state.●

Notes:
This should almost *always* be set to 1. If it isn't your mileage may vary, as I haven't really tested
the consequences.

●

Syslog Logging Option
Format: use_syslog=<0/1>
Example: use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values
are as follows:

0 = Don't use syslog facility●

1 = Use syslog facility●

Syslog Severity Level
Format: syslog_level=<1-2>
Example: syslog_level=1

This is the level of severity needed for service messages to be logged to the syslog facility. Values are as
follows:

1 = Log services which are in WARNING, UNKNOWN, or CRITICAL states.●

2 = Log only services which are in a CRITICAL state.●

Notes:

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (6 of 12) [6/28/2000 8:00:21 AM]

This should almost *always* be set to 1. If it isn't your mileage may vary, as I haven't really tested
the consequences.

Notification Logging Option
Format: log_notifications=<0/1>
Example: log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or
regular service failures your log file will grow relatively quickly. Use this option to keep contact
notifications from being logged.

0 = Don't log notifications●

1 = Log notifications●

Service Check Retry Logging Option
Format: log_service_retries=<0/1>
Example: log_service_retries=1

This variable determines whether or not service check retries are logged. Service check retries occur
when a service check results in a non-OK state, but you have configured NetSaint to retry the service
more than once before responding to the error. Services in this situation are considered to be in "soft"
states. Logging service check retries is mostly useful when attempting to debug NetSaint or test out
service event handlers.

0 = Don't log service check retries●

1 = Log service check retries●

Host Check Retry Logging Option
Format: log_host_retries=<0/1>
Example: log_host_retries=1

This variable determines whether or not host check retries are logged. Logging host check retries is
mostly useful when attempting to debug NetSaint or test out host event handlers.

0 = Don't log host check retries●

1 = Log host check retries●

Event Handler Logging Option
Format: log_event_handlers=<0/1>
Example: log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are
optional commands that can be run whenever a service or hosts changes state. Logging event handlers is
most useful when debugging NetSaint or first trying out your event handler scripts.

0 = Don't log event handlers●

1 = Log event handlers●

Initial States Logging Option
Format: log_initial_states=<0/1>

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (7 of 12) [6/28/2000 8:00:22 AM]

Example: log_initial_states=1

This variable determines whether or not NetSaint will force all initial host and service states to be logged,
even if they result in an OK state. Initial service and host states are normally only logged when there is a
problem on the first check. Enabling this option is useful if you are using an application that scans the log
file to determine long-term state statistics for services and hosts.

0 = Don't log initial states (default)●

1 = Log initial states●

External Command Logging Option
Format: log_external_commands=<0/1>
Example: log_external_commands=1

This variable determines whether or not NetSaint will log external commands that it receives from the
external command file. Note: This option does not control whether or not passive service checks (which
are a type of external command) get logged. To enable or disable logging of passive checks, use the
log_passive_service_checks option.

0 = Don't log external commands●

1 = Log external commands (default)●

Passive Service Check Logging Option
Format: log_passive_service_checks=<0/1>
Example: log_passive_service_checks=1

This variable determines whether or not NetSaint will log passive service checks that it receives from the
external command file. If you are setting up a distributed monitoring environment or plan on handling a
large number of passive checks on a regular basis, you may wish to disable this option so your log file
doesn't get too large.

0 = Don't log passive service checks●

1 = Log passive service checks (default)●

Global Host Event Handler Option
Format: global_host_event_handler=<command>
Example: global_host_event_handler=log-host-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state
change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in each host definition. The command argument is the short name of a command
definition that you define in your host configuration file. More information on event handlers can be
found here.

Global Service Event Handler Option
Format: global_service_event_handler=<command>
Example: global_service_event_handler=log-service-event-to-db

This option allows you to specify a service event handler command that is to be run for every service

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (8 of 12) [6/28/2000 8:00:22 AM]

state change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in each service definition. The command argument is the short name of a command
definition that you define in your host configuration file. More information on event handlers can be
found here.

Inter-Check Sleep Time
Format: sleep_time=<seconds>
Example: sleep_time=1

This is the number of seconds that NetSaint will sleep before checking to see if the next service check in
the scheduling queue should be executed. Note that NetSaint will only sleep after it "catches up" with
queued service checks that have fallen behind.
Inter-Check Delay Method
Format: inter_check_delay_method=<n/d/s>
Example: inter_check_delay_method=s

This option allows you to control how service checks are initially "spread out" in the event queue. Using
a "smart" delay calculation (the default) will cause NetSaint to calculate an average check interval and
spread initial checks of all services out over that interval, thereby helping to eliminate CPU load spikes.
Using no delay is generally not recommended unless you are testing the service check parallelization
functionality. Using no delay will cause all service checks to be scheduled for execution at the same
time. This means that you will generally have large CPU spikes when the services are all executed in
parallel. More information on how to estimate how the inter-check delay affects service check scheduling
can be found here.Values are as follows:

n = Don't use any delay - schedule all service checks to run immediately (i.e. at the same time!)●

d = Use a "dumb" delay of 1 second between service checks●

s = Use a "smart" delay calculation to spread service checks out evenly (default)●

Service Interleave Factor
Format: service_interleave_factor=<s|n>
Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even
distribution of service checks, reduced load on remote hosts, and faster overall detection of host
problems. With the introduction of service check parallelization, remote hosts could get bombarded with
checks if interleaving was not implemented. This could cause the service checks to fail or return
incorrect results if the remote host was overloaded with processing other service check requests. Setting
this value to 1 is equivalent to not interleaving the service checks (this is how versions of NetSaint
previous to 0.0.5 worked). Set this value to s (smart) for automatic calculation of the interleave factor
unless you have a specific reason to change it. The best way to understand how interleaving works is to
watch the status CGI (detailed view) when NetSaint is just starting. You should see that the service check
results are spread out as they begin to appear. More information on how interleaving works can be found
here.

n = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave
factor of 1 is equivalent to not interleaving the service checks.

●

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (9 of 12) [6/28/2000 8:00:22 AM]

s = Use a "smart" interleave factor calculation (default)●

Maximum Concurrent Service Checks
Format: max_concurrent_checks=<max_checks>
Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can be run in parallel at
any given time. Specifying a value of 1 for this variable essentially prevents any service checks from
being parallelized. You'll have to modify this value based on the system resources you have available on
the machine that runs NetSaint, as it directly affects the maximum load that will be imposed on the
system (processor utilization, memory, etc.). More information on how to estimate how many concurrent
checks you should allow can be found here.

Service Reaper Frequency
Format: service_reaper_frequency=<frequency_in_seconds>
Example: service_reaper_frequency=10

This option allows you to control the frequency in seconds of service "reaper" events. "Reaper" events
process the results from parallelized service checks that have finished executing. These events consitute
the core of the monitoring logic in NetSaint.
Timing Interval Length
Format: interval_length=<seconds>
Example: interval_length=60

This is the number of seconds per "unit interval" used for timing in the scheduling queue,
re-notifications, etc. "Units intervals" are used in the host configuration file to determine how often to
run a service check, how often of re-notify a contact, etc.

Important: The default value for this is set to 60, which means that a "unit value" of 1 in the host
configuration file will mean 60 seconds (1 minute). I have not really tested other values for this variable,
so proceed at your own risk if you decide to do so!
Agressive Host Checking Option
Format: use_agressive_host_checking=<0/1>
Example: use_agressive_host_checking=0

Beginning with release 0.0.4, NetSaint tries to be a little smarter about how and when it checks the status
of hosts. In general, disabling this option will allow NetSaint to make some smarter decisions and check
hosts a bit faster. Enabling this option will increase the amount of time required to check hosts, but may
improve reliability a bit. If you want to know more about exactly what this option does, search the source
code in the netsaint.c file for the string "use_agressive_host_checking" and read some of the comments
I've added. Unless you have problems with NetSaint not recognizing that a host recovered, I would
suggest not enabling this option.

0 = Don't use agressive host checking (default)●

1 = Use agressive host checking●

Service Check Timeout
Format: service_check_timeout=<seconds>

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (10 of 12) [6/28/2000 8:00:22 AM]

Example: service_check_timeout=60

This is the maximum number of seconds that NetSaint will allow service checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.
Host Check Timeout
Format: host_check_timeout=<seconds>
Example: host_check_timeout=60

This is the maximum number of seconds that NetSaint will allow host checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned and the host will be assumed to be DOWN. A
timeout error will also be logged.
Event Handler Timeout
Format: event_handler_timeout=<seconds>
Example: event_handler_timeout=60

This is the maximum number of seconds that NetSaint will allow event handlers to be run. If an event
handler exceeds this time limit it will be killed and a warning will be logged.
Notification Timeout
Format: notification_timeout=<seconds>
Example: notification_timeout=60

This is the maximum number of seconds that NetSaint will allow notification commands to be run. If a
notification command exceeds this time limit it will be killed and a warning will be logged.
Obsessive Compulsive Service Processor Timeout
Format: ocsp_timeout=<seconds>
Example: ocsp_timeout=60

This is the maximum number of seconds that NetSaint will allow an obsessive compulsive service
processor command to be run. If a command exceeds this time limit it will be killed and a warning will
be logged.
Obsess Over Services Option
Format: obsess_over_services=<0/1>
Example: obsess_over_services

This value determines whether or not NetSaint will "obsess" over service checks results and run the
obsessive compulsive service processor command you define. I know - funny name, but it was all I could
think of. This option is useful for performing distributed monitoring. If you're not doing distributed
monitoring, don't enable this option.

0 = Don't obsess over services (default)●

1 = Obsess over services●

Obsessive Compulsive Service Processor Command
Format: ocsp_command=<command>
Example: ocsp_command=obsessive_service_handler

This option allows you to specify a command to be run after every service check. This command is

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (11 of 12) [6/28/2000 8:00:23 AM]

executed after any event handler or notification commands. The command argument is the short name of
a command definition that you define in your host configuration file. This option is useful for performing
distributed monitoring. More information on distributed monitoring can be found here.

Administrator Email Address
Format: admin_email=<email_address>
Example: admin_email=root

This is the email address for the administrator of the local machine (i.e. the one that NetSaint is running
on). This value can be used in notification commands by using the $ADMINEMAIL$ macro.

Administrator Pager
Format: admin_pager=<pager_number_or_pager_email_gateway>
Example: admin_pager=pageroot@pagenet.com

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one
that NetSaint is running on). The pager number/address can be used in notification commands by using
the $ADMINPAGER$ macro.

Main Configuration File Options

http://www.netsaint.org/docs/0_0_6/configmain.html (12 of 12) [6/28/2000 8:00:23 AM]

CGI Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:
Lines that start with a '#' character are taken to be comments and are not processed1.
Variables names must begin at the start of the line - no white space is allowed before the name2.
Variable names are case-sensitive3.

Sample Configuration

A sample CGI configuration file can be created by running the 'make config' command. The default name of
the CGI configuration file is nscgi.cfg.

Index

Main configuration file location
Physical HTML path
URL HTML path
Process check command
Authentication usage
Default user name
System/process information access
System/process command access
Configuration information access
Global host information access
Global host command access
Global service information access
Global service command access
Extended host information
Alert window suppression
CGI refresh rate
Audio alerts

Main Configuration File Location
Format: main_config_file=<file_name>
Example: main_config_file=/usr/local/netsaint/etc/netsaint.cfg

This specifies the location of your main configuration file. The CGIs need to know where to find this file in
order to get information about configuration information, current host and service status, etc.
Physical HTML Path
Format: physical_html_path=<path>
Example: physical_html_path=/usr/local/netsaint/share

This is the physical path where the HTML files for NetSaint are kept on your workstation or server. NetSaint

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (1 of 6) [6/28/2000 8:00:27 AM]

assumes that the documentation and images files (used by the CGIs) are stored in subdirectories called docs/
and images/, respectively.
URL HTML Path
Format: url_html_path=<path>
Example: url_html_path=/netsaint

If, when accessing NetSaint via a web browser, you point to an URL like http://www.myhost.com/netsaint,
this value should be /netsaint. Basically, its the path portion of the URL that is used to access the NetSaint
HTML pages.
Process Check Command
Format: process_check_command=<command_line>
Example: process_check_command=/usr/local/netsaint/libexec/check_netsaint

/usr/local/netsaint/var/status.log 5 '/usr/local/netsaint/bin/netsaint -d
/usr/local/netsaint/etc/netsaint.cfg'

This is the command that the CGIs should use to check the status of the NetSaint process. This provides the
CGIs (as well as yourself) with some idea of whether or not NetSaint is still running. If the CGIs cannot
determine whether or not NetSaint is running on the local machine, some features like external commands in
the extended information and command CGIs may not be available. The process check command that you
specify should follow the same guidelines that are required of the plugins.

Notes:
The check_netsaint plugin is ideal for the purpose of checking both the status of the NetSaint process
and the "freshness" of the data in the status log. I would highly recommend using it in this situation.

●

If you are running a chroot'ed web server, you will have to place the plugin (or whatever you're using) in
the sbin/ subdirectory of your NetSaint installation.

●

Authentication Usage
Format: use_authentication=<0/1>
Example: use_authentication=1

This option controls whether or not the CGIs will use the authentication and authorization functionality when
determining what information and commands users have access to. I would strongly suggest that you use the
authentication functionality for the CGIs. If you decide not to use authentication, make sure to remove the
command CGI to prevent unauthorized users from issuing commands to NetSaint. The CGI will not issue
commands to NetSaint if authentication is disabled, but I would suggest removing it altogether just to be on the
safe side. More information on how to setup authentication and configure authorization for the CGIs can be
found here.

0 = Don't use authentication functionality●

1 = Use authentication and authorization functionality (default)●

Default User Name
Format: default_user_name=<username>
Example: default_user_name=guest

Setting this variable will define a default username that can access the CGIs. This allows people within a
secure domain (i.e., behind a firewall) to access the CGIs without necessarily having to authenticate to the web

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (2 of 6) [6/28/2000 8:00:27 AM]

server. You may want to use this to avoid having to use basic authentication if you are not using a secure
server, as basic authentication transmits passwords in clear text over the Internet.

Important: Do not define a default username unless you are running a secure web server and are sure that
everyone who has access to the CGIs has been authenticated in some manner! If you define this variable,
anyone who has not authenticated to the web server will inherit all rights you assign to this user!
System/Process Information Access
Format: authorized_for_system_information=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_system_information=netsaintadmin,theboss

This is a comma-delimited list of names of authenticated users who can view system/process information in
the extended information CGI. Users in this list are not automatically authorized to issue system/process
commands. If you want users to be able to issue system/process commands as well, you must add them to the
authorized_for_system_commands variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

System/Process Command Access
Format: authorized_for_system_commands=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_system_commands=netsaintadmin

This is a comma-delimited list of names of authenticated users who can issue system/process commands via
the command CGI. Users in this list are not automatically authorized to view system/process information. If
you want users to be able to view system/process information as well, you must add them to the
authorized_for_system_information variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Configuration Information Access
Format: authorized_for_configuration_information=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_configuration_information=netsaintadmin

This is a comma-delimited list of names of authenticated users who can view configuration information in the
configuration CGI. Users in this list can view information on all configured hosts, host groups, services,
contacts, contact groups, time periods, and commands. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Host Information Access
Format: authorized_for_all_hosts=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_hosts=netsaintadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all hosts. Users in this list are also automatically authorized to view information for all
services. Users in this list are not automatically authorized to issue commands for all hosts or services. If you
want users able to issue commands for all hosts and services as well, you must add them to the
authorized_for_all_host_commands variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Global Host Command Access
Format: authorized_for_all_host_commands=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_host_commands=netsaintadmin

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (3 of 6) [6/28/2000 8:00:28 AM]

This is a comma-delimited list of names of authenticated users who can issue commands for all hosts via the
command CGI. Users in this list are also automatically authorized to issue commands for all services. Users in
this list are not automatically authorized to view status or configuration information for all hosts or services. If
you want users able to view status and configuration information for all hosts and services as well, you must
add them to the authorized_for_all_hosts variable. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Service Information Access
Format: authorized_for_all_services=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_services=netsaintadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all services. Users in this list are not automatically authorized to view information for all hosts.
Users in this list are not automatically authorized to issue commands for all services. If you want users able to
issue commands for all services as well, you must add them to the authorized_for_all_service_commands
variable. More information on how to setup authentication and configure authorization for the CGIs can be
found here.

Global Service Command Access
Format: authorized_for_all_service_commands=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_service_commands=netsaintadmin

This is a comma-delimited list of names of authenticated users who can issue commands for all services via
the command CGI. Users in this list are not automatically authorized to issue commands for all hosts. Users in
this list are not automatically authorized to view status or configuration information for all hosts. If you want
users able to view status and configuration information for all services as well, you must add them to the
authorized_for_all_services variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Extended Host Information
Format: hostextinfo[<host_name>]=<notes_url>;<icon_image>;<vrml_image>;<gd2_image>;<alt_tag>
Example: hostextinfo[router3]=/hostinfo/router3.html;cat5000.gif;cat5000.jpg;cat5000.gd2;Cisco

Catalyst 5000

Extended host information entries are basically used to make the output from the status, statusmap, statuswrl,
and extinfo CGIs look pretty. They have no effect on monitoring and are completely optional.

<host_name> This is a short name of the host, as defined in the host configuration file.

<notes_url> This is an optional URL that can be used to provide more information about the host. If you
specify an URL, you will see a link that says "Notes About This Host" in the extended
information CGI (when you are viewing information about the specified host). Any valid
URL can be used. If you plan on using relative paths, the base path will the the same as
what is used to access the CGIs (i.e. /cgi-bin/netsaint/). This can be very useful if you want
to make detailed information on the host, emergency contact methods, etc available to other
support staff.

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (4 of 6) [6/28/2000 8:00:28 AM]

<icon_image> The name of a GIF, PNG, or JPG image that should be associated with this host. This image
will be displayed in the status and extended information CGIs. The image will look best if it
is 40x40 pixels in size. Images for hosts are assumed to be in the logos/ subdirectory in your
HTML images directory (i.e. /usr/local/netsaint/share/images/logos).

<vrml_image> The name of a GIF, PNG, or JPG image that should be associated with this host. This image
will be used as the texture map for the specified host in the statuswrl CGI. Unlike the image
you use for the <icon_image> variable, this one should probably not have any
transparency. If it does, the host object will look a bit wierd. Images for hosts are assumed
to be in the logos/ subdirectory in your HTML images directory (i.e.
/usr/local/netsaint/share/images/logos).

<gd2_image> The name of a GD2 format image that should be associated with this host. This image will
be used in the image created by the statusmap CGI. GD2 images can be created from PNG
images by using the pngtogd2 utility supplied with Thomas Boutell's gd library. The GD2
images should be created in uncompressed format in order to minimize CPU load when the
statusmap CGI is generating the network map image. The image will look best if it is 40x40
pixels in size. You can leave these option blank if you are not using the statusmap CGI.
Images for hosts are assumed to be in the logos/ subdirectory in your HTML images
directory (i.e. /usr/local/netsaint/share/images/logos).

<alt_tag> An optional string that is used in the ALT tag of the image specified by the <icon_image>
argument. The ALT tag is used in both the status and statusmap CGIs.

Alert Window Suppression
Format: suppress_alert_window=<0/1>
Example: suppress_alert_window=1

This option allows you to specify whether or not you want to permanently suppress the host alert window in
the status CGI. Normally the alert window will be displayed if one or more hosts is down or unreachable.

0 = Don't suppress alert window, allow it to be displayed (default)●

1 = Don't display alert window at any time●

CGI Refresh Rate
Format: refresh_rate=<rate_in_seconds>
Example: refresh_rate=90

This option allows you to specify the number of seconds between page refreshes for the status, statusmap, and
extinfo CGIs.

Audio Alerts
Formats: host_unreachable_sound=<sound_file>

host_down_sound=<sound_file>
service_critical_sound=<sound_file>
service_warning_sound=<sound_file>
service_unknown_sound=<sound_file>

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (5 of 6) [6/28/2000 8:00:28 AM]

http://www.boutell.com/gd

Examples: host_unreachable_sound=hostu.wav
host_down_sound=hostd.wav
service_critical_sound=critical.wav
service_warning_sound=warning.wav
service_unknown_sound=unknown.wav

These options allow you to specify an audio file that should be played in your browser if there are problems
when you are viewing the status CGI. If there are problems, the audio file for the most critical type of problem
will be played. The most critical type of problem is on or more unreachable hosts, while the least critical is one
or more services in an unknown state (see the order in the example above). Audio files are assumed to be in the
media/ subdirectory in your HTML images directory (i.e. /usr/local/netsaint/share/media).

CGI Configuration File Options

http://www.netsaint.org/docs/0_0_6/configcgi.html (6 of 6) [6/28/2000 8:00:28 AM]

Using Macros In Commands

Macros

One of the features available in NetSaint is the ability to use macros in command defintions. Immediately
prior to the execution of a command, NetSaint will replace all macros in the command with their
corresponding values. This allows you to define a few generic commands to handle all your needs.

Macro Validity

Although macros can be used in all commands you define, not all macros may be "valid" in a particular type
of command. For example, some macros may only be valid during service notification commands, whereas
other may only be valid during host check commands. There are seven types of commands that NetSaint
recognizes and treats differently. Six types are listed below, along with the macros that can be used with them.
The seventh type of command is the ocsp command - any macros which are valid for service event handlers
can be used with the ocsp command.

Service checks1.
Service notifications2.
Host checks3.
Host notifications4.
Service event handlers and/or a global service event handler5.
Host event handlers and/or a global host event handler6.

The table below lists all macros currently available in NetSaint, along with a brief description of each and the
types of commands in which they are valid. If a macro is used in a command in which it is invalid, it is
replaced with an empty string. It should be noted that macros consist of all uppercase characters and are
enclosed in $ characters.

Available Macros

Macro Description Service
Checks

Service
Notifications

Host
Checks

Host
Notifications

Service
Event
Handlers
&
Global
Service
Event
Handler

Host
Event
Handlers
&
Global
Host
Event
Handler

$CONTACTNAME$

Short name for the contact
(i.e. "jdoe") that is being
notified of a host or service
problem

No Yes No Yes No No

$CONTACTALIAS$
Long name/description for
the contact (i.e. "John Doe")
being notified

No Yes No Yes No No

$CONTACTEMAIL$ Email address of the contact
being notified No Yes No Yes No No

$CONTACTPAGER$ Pager number/address of the
contact being notified No Yes No Yes No No

Using Macros In Commands

http://www.netsaint.org/docs/0_0_6/macros.html (1 of 3) [6/28/2000 8:00:30 AM]

$HOSTNAME$

Short name for the host (i.e.
"biglinuxbox"). During a
service notification, this
refers to the host associated
with the service.

No Yes No Yes Yes Yes

$HOSTALIAS$
Long name/description for
the host (i.e. "Big Linux
Server")

No Yes No Yes Yes Yes

$HOSTADDRESS$ The IP address of the host Yes Yes Yes Yes Yes Yes

$HOSTSTATE$
The current state of the host
("UP", "DOWN", or
"UNREACHABLE")

No Yes No Yes Yes Yes

$ARGn$

The nth argument passed to
the service check command.
Read the documentation on
service definitions for more
info. NetSaint supports up to
sixteen argument macros
($ARG1$ through
$ARG16$).

Yes No No No No No

$SERVICEDESC$
The long name/description of
the service being monitored
(i.e. "Main Website")

No Yes No No Yes No

$SERVICESTATE$

The status of the service
being monitored
("WARNING",
"UNKNOWN",
"CRITICAL", or "OK")

No Yes No No Yes No

$OUTPUT$

The text output from the
service or host check (i.e.
"FTP ok - 1 second response
time"). For service
notifications and event
handlers, this will contain the
text output from the service
check. For host notifications
and event handlers, this will
contain the text output from
the host check.

No Yes No Yes Yes Yes

$NOTIFICATIONTYPE$

Identifies the type of
notification that is being sent
("PROBLEM",
"RECOVERY", or
"ACKNOWLEDGEMENT").

No Yes No Yes No No

$DATETIME$ Date/time stamp No Yes No Yes Yes Yes

$ADMINEMAIL$
Email address for the local
administrator (of the host
doing the monitoring)

Yes Yes Yes Yes Yes Yes

$ADMINPAGER$ Pager number/address for the
local administrator Yes Yes Yes Yes Yes Yes

Using Macros In Commands

http://www.netsaint.org/docs/0_0_6/macros.html (2 of 3) [6/28/2000 8:00:30 AM]

$STATETYPE$

The state type for the current
service or host check
("HARD" or "SOFT"). Soft
states occur when service or
host checks return a non-OK
state and are in the process of
being retried. Hard states
result when service or host
checks have been checked a
specified maximum number
of times. Notifications are
sent out only when hard state
changes occur.

No No No No Yes Yes

$SERVICEATTEMPT$

This refers to the number of
the current service check
retry. For instance, if this is
the second time that the
service is being rechecked,
this will be the number two.
Current attempt number is
only useful when writing
service event handlers for
"soft" states that take a
specific action based on the
service retry number.

No No No No Yes No

$HOSTATTEMPT$

This refers to the number of
the current host check retry.
For instance, if this is the
second time that the host is
being rechecked, this will be
the number two. Current
attempt number is only useful
when writing host event
handlers for "soft" states that
take a specific action based
on the host retry number.

No No No No No Yes

Using Macros In Commands

http://www.netsaint.org/docs/0_0_6/macros.html (3 of 3) [6/28/2000 8:00:30 AM]

NetSaint Developer Documentation
Version 0.0.6

Last Updated: April 14th, 2000

Note: This documentation is far from complete. For the beta releases, I've just settled with
providing information on file formats. More information will be coming as I find the time...

Plugin Development
Plugin theory
Guidelines for plugin development

File Formats
Status file
Comment file
State retention file

NetSaint Developer Documentation

http://www.netsaint.org/docs/0_0_6/developer/ [6/28/2000 8:00:31 AM]

Installing NetSaint

Unpacking The Distribution

To unpack the NetSaint distribution, type the following two commands at a shell prompt:

gunzip netsaint-0.0.6.tar.gz
tar xf netsaint-0.0.6.tar

If you downloaded the ZIP version of the distribution, type the following:

unzip netsaint-0.0.6.zip

When you have finished executing these commands, you should find a netsaint-0.0.6 directory that has
been created in your current directory. Inside that directory you will find all the files that compromise the
core NetSaint distribution.

Compiling The Binaries

Create the base directory where you would like to install NetSaint as follows...

mkdir /usr/local/netsaint

Run the configure script to initialize variables and create a Makefile as follows...

./configure --prefix=prefix --with-cgiurl=cgiurl --with-htmurl=htmurl
--with-netsaint-user=someuser --with-netsaint-grp=somegroup

Replace prefix with the actual directory that you created in the step above (default is
/usr/local/netsaint)

●

Replace cgiurl with the actual url you will be using to access the CGIs (default is
/cgi-bin/netsaint). Do NOT append a slash at the end of the url.

●

Replace htmurl with the actual url you will be using to access the HTML for the main interface
and documentation (default is /netsaint/)

●

Replace someuser with the name of a user on your system that will be used for setting permissions
on the installed files (default is netsaint)

●

Replace somegroup with the name of a group on your system that will be used for setting
permissions on the installed files (default is netsaint)

●

IMPORTANT: The --prefix argument of the configure script is very important, as it determines what
directory everything gets installed under. If you do not supply this option, the configure script will use
/usr/local/netsaint as the target directory. Make sure that this directory already exists on your system
before attempting to install everything.

Compile NetSaint and the CGIs with the following command:

make all

Installing NetSaint

http://www.netsaint.org/docs/0_0_6/installing.html (1 of 3) [6/28/2000 8:00:34 AM]

Installing The Binaries And HTML Files

Install the binaries and HTML files (documentation and main web page) with the following command:

make install

Creating And Installing Sample Configuration Files

You can optionally create sample main, host, and CGI configuration files with the following command:

make config

You can install the sample configuration files with the following command:

make install-config

Installing An Init Script

If you wish, you can also install the sample init script to /etc/rc.d/init.d/netsaint with the following
command:

make install-init

...or if you plan on running NetSaint as a daemon, you can install the sample daemon init script to
/etc/rc.d/init.d/netsaint with the following command:

make install-daemoninit

Directory Structure And File Locations

Change to the root of your NetSaint installation directory with the following command...

cd /usr/local/netsaint

You should see five different subdirectories. A brief description of what each directory contains is given
in the table below.

Sub-Directory Contents
bin/ NetSaint core program

etc/ Main and host configuration files (netsaint.cfg and hosts.cfg)

eventhandlers/
Sample scripts that can be used in event handlers. There are also example scripts for
implementing redundant monitoring.

sbin/ CGIs programs and config file (nscgi.cfg)

share/ HTML files and images for web interface and documentation
var/ Empty directory for log files

Notes:
The default hosts.cfg file created by the configure script will expect that all plugins reside in a
libexec/ subdirectory off of your NetSaint installation. While this directory is not created by the
install script distributed with NetSaint, it is created by the install script supplied with the plugins.

1.

Installing NetSaint

http://www.netsaint.org/docs/0_0_6/installing.html (2 of 3) [6/28/2000 8:00:34 AM]

Plugins can be obtained from http://www.netsaint.org/download.

Where To Go From Here

Okay, so you're done compiling and installing NetSaint. Now you can move on to configuring NetSaint
before starting it up. You'll also probably want to use the web interface, so you'll also have to read the
instructions on installing the web interface and configuring web authentication, etc.

Installing NetSaint

http://www.netsaint.org/docs/0_0_6/installing.html (3 of 3) [6/28/2000 8:00:34 AM]

http://www.netsaint.org/download

Event Handlers

Introduction

Event handlers are optional commands that are executed whenever a host or service state change occurs. An obvious use for
event handlers (especially with services) is the ability for NetSaint to proactively fix problems before anyone is notified.
Another use for event handlers is to log service or host events to an external database.

Event Handler Types

There are two main types of event handlers than can be defined - service event handlers and host event handlers. Event handler
commands are (optionally) defined in each host and service definition. Because these event handlers are only associated with
particular services or hosts, I will call these "local" event handlers. If a local event handler has been defined for a service or
host, it will be executed when that host or service changes state.

You may also specify global event handlers that should be run for every host or service state change by using the
global_host_event_handler and global_service_event_handler options in your main configuration file. Global event handlers are
run immediately prior to running a local service or host event handler.

When Are Event Handler Commands Executed?

Service and host event handler commands are executed when a service or host:
is in a "soft" error state●

initially goes into a "hard" error state●

recovers from a "soft" or "hard" error state●

What are "soft" and "hard" states you ask? They are described here .

Event Handler Execution Order

Global event handlers are executed before any local event handlers that you have configured for specific hosts or services. The
diagrams below show the general logic for event handler execution...

Host Event
Handler Logic

Service Event
Handler Logic

Writing Event Handler Commands

In most cases, event handler commands will be shell or perl scripts. At a minimum, the scripts should take the following macros
as arguments:

Service event handler macros: $SERVICESTATE$, $STATETYPE$, $SERVICEATTEMPT$
Host event handler macros: $HOSTSTATE$, $STATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments passed in and take any necessary action based upon those values. The
best way to understand how event handlers should work is to see and example. Lucky for you, one is provided below. There are
also some sample event handler scripts included in the eventhandlers/ subdirectory of the NetSaint distribution. Some of these
sample scripts demonstrate the use of external commands to implement redundant monitoring hosts.

Permissions For Event Handler Commands

Any event handler commands you configure will execute with the same permissions as the user under which NetSaint is running
on your machine. This presents a problem with scripts that attempt to restart system services, as root privileges are generally
required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough permissions to the
NetSaint user for executing the necessary system commands. I'll leave the details of how to do that up to you...

Event Handlers

http://www.netsaint.org/docs/0_0_6/eventhandlers.html (1 of 3) [6/28/2000 8:00:38 AM]

Debugging Event Handler Commands

When you are debugging event handler commands, I would highly recommend that you enable logging of service retries, host
retries, and event handler commands. All of these logging options are configured in the main configuration file. Enabling
logging for these options will allow you to see exactly when and why event handler commands are being executed.

When you're done debugging your event handler commands you'll probably want to disable logging of service and host retries.
They can fill up your log file fast, but if you have enabled log rotation you might not care.

Service Event Handler Example

The example below assumes that you are monitoring the HTTP server on the local machine and have specified restart-httpd as
the event handler command for the HTTP service definition. Also, I will be assuming that you have set the <max_attempts>
option for the service to be a value of 4 or greater (i.e. the service is checked 4 times before it is considered to have a real
problem).

First off, we must define the event handler as a command. Notice the macros that I am passing to the event handler command -
these are important!

command[restart-httpd]=/usr/local/netsaint/restart-httpd $SERVICESTATE$ $STATETYPE$ $SERVICEATTEMPT$

Now, let's actually write the event handler script (this is the /usr/local/netsaint/restart-httpd file).

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#
Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#

What state is the HTTP service in?
case "$1" in
OK)
 # The service just came back up, so don't do anything...
 ;;
WARNING)
 # We don't really care about warning states, since the service is probably still running...
 ;;
UNKNOWN)
 # We don't know what might be causing an unknown error, so don't do anything...
 ;;
CRITICAL)
 # Aha! The HTTP service appears to have a problem - perhaps we should restart the
server...

 # Is this a "soft" or a "hard" state?
 case "$2" in

 # We're in a "soft" state, meaning that NetSaint is in the middle of retrying the
 # check before it turns into a "hard" state and contacts get notified...
 SOFT)

 # What check attempt are we on? We don't want to restart the web server on the
first
 # check, because it may just be a fluke!
 case "$3" in

 # Wait until the check has been tried 3 times before restarting the web server.
 # If the check fails on the 4th time (after we restart the web server), the state
 # type will turn to "hard" and contacts will be notified of the problem.
 # Hopefully this will restart the web server successfully, so the 4th check will

Event Handlers

http://www.netsaint.org/docs/0_0_6/eventhandlers.html (2 of 3) [6/28/2000 8:00:38 AM]

 # result in a "soft" recovery. If that happens no one gets notified because we
 # fixed the problem!
 3)
 echo -n "Restarting HTTP service (3rd soft critical state)..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;

 # The HTTP service somehow managed to turn into a hard error without getting fixed.
 # It should have been restarted by the code above, but for some reason it didn't.
 # Let's give it one last try, shall we?
 # Note: Contacts have already been notified of a problem with the service at this
 # point (unless you disabled notifications for this service)
 HARD)
 echo -n "Restarting HTTP service..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;
esac
exit 0

The sample script provided above will attempt to restart the web server on the local machine in two different instances - after
the HTTP service is being retried for the 3rd time (in an "soft" error state) and after the service falls into a "hard" state. The
"hard" state situation shouldn't really occur, since the script should restart the service when its still in a "soft" state (i.e. the 3rd
check retry), but its left as a fallback anyway.

It should be noted that the service event handler will only be execute the first time that the service falls into a "hard" state. This
will prevent NetSaint from continuously executing the script to restart the web server when it is in a "hard" state.

Event Handlers

http://www.netsaint.org/docs/0_0_6/eventhandlers.html (3 of 3) [6/28/2000 8:00:38 AM]

Redundant Network Monitoring

Introduction

This section describes a few scenarios for implementing redundant monitoring hosts an various types of network layouts. With redundant hosts, you can maintain the ability to monitor your network when
the primary host that runs NetSaint fails or when portions of your network become unreachable.

Note: If you are just learning how to use NetSaint, I would suggest not trying to implement redudancy until you have becoming familiar with the prerequisites I've laid out. Redundancy is a relatively
complicated issue to understand, and even more difficult to implement properly.

Index

Prerequisites
Considerations
Sample scripts
Scenario 1 - Implementing redundancy on the same network segment
Scenario 2 - A simple way to implement redundancy across network segments
Scenario 3 - A smarter way to implement redundancy across network segments
Scenario 4 - Implementing multiple redundancy methods

Prerequisites

Before you can even think about implementing redundancy with NetSaint, you need to be familiar with the following...
Implementing event handlers for hosts and services●

Issuing external commands to NetSaint via shell scripts●

Executing plugins on remote hosts●

Checking the status of the NetSaint process with the check_netsaint plugin●

Considerations

There are a few things you need to understand before you jump into implementing redundancy...

First off, 0.0.5 is a first release of NetSaint where redundancy can actually be implemented in any kind of reasonable manner. It just so happened that all the pieces fell into place for accomodating this
(event handlers, program modes, and external commands). Additional support for implementing redundancy will be incorporated into future versions of NetSaint, but I need your feedback!

Sample Scripts

All of the sample scripts that I use in this documentation can be found in the eventhandlers/ subdirectory of the NetSaint distribution. You'll probably need to modify them to work on your system...
Scenario 1 - Implementing Redundancy On The Same Network Segment

Introduction

This is the easiest method of implementing redundant monitoring hosts on your network. However, this method only will only protect against a limited number of failures. More complex setups are
necessary in order to provide better redundancy across different network segments.

Goals

The goal of this type of redundancy implementation is for a "slave" host running NetSaint to take over the job of monitoring the entire network if:
The "master" host that runs NetSaint is down or..1.
The NetSaint process on the "master" host stops running for some reason2.

Network Layout Diagram

The diagram below shows a very simple network setup. For this scenario I will be assuming that hosts A and E are both running NetSaint and are monitoring all the hosts shown. Host A will be considered
the "master" host and host E will be considered the "slave" host.

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (1 of 8) [6/28/2000 8:00:45 AM]

Initial Program Modes

First off, we need to define what program mode the master and slave hosts will be in when they start monitoring. This is done by using the program_mode option in the main configuration file. The master
host (host A) should have its initial program mode set to active, while the slave host (host B) should have its initial program mode set to standby. That was easy enough...

Initial Configuration

Next we need to consider the differences between the host configuration files on the master and slave hosts...

I will assume that you have the master host (host A) setup to monitor services on all hosts shown in the diagram above. The slave host (host E) should be setup to monitor the same services and hosts, with
the following additions in the configuration file...

The host definition for host A (in the host E configuration file) should have a host event handler defined. Lets say the name of the host event handler is handle-master-host-event.●

The configuration file on host E should have a service defined to check the status of the NetSaint process on host A. Lets assume that you define this service check to run the check_netsaint plugin
on host A. This can be done by using one of the methods described in this FAQ.

●

The service definition for the NetSaint process check on host A should have an event handler defined. Lets say the name of the service event handler is handle-master-proc-event.●

It is important to note that host A (the master host) has no knowledge of host E (the slave host). In this scenario it simply doesn't need to. Of course you may be monitoring services on host E from host A,
but that has nothing to do with the implementation of redundancy...

Event Handler Command Definitions

We need to stop for a minute and describe what the command definitions for the event handlers on the slave host look like. Here is an example...

command[handle-master-host-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-host-event $HOSTSTATE$ $STATETYPE$
command[handle-master-proc-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-proc-event $SERVICESTATE$ $STATETYPE$

This assumes that you have placed the event handler scripts in the /usr/local/netsaint/libexec/eventhandlers directory. You may place them anywhere you wish, but you'll need to modify the examples I've
given here.

Event Handler Scripts

Okay, now lets take a look at what the event handler scripts look like...

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (2 of 8) [6/28/2000 8:00:45 AM]

Host Event Handler (handle-master-host-event)

#!/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
 case "$1" in
 DOWN)
 # The master host has gone down!
 # We should now become the master host and take
 # over the responsibilities of monitoring the
 # network, so enter active mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_active_mode
 ;;
 UP)
 # The master host has recovered!
 # We should go back to being the slave host and
 # let the master host do the monitoring, so
 # enter standby mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_standby_mode
 ;;
 esac
 ;;
esac
exit 0

Service Event Handler (handle-master-proc-event)

#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)
 case "$1" in
 CRITICAL)
 # The master NetSaint process is not running!
 # We should now become the master host and
 # take over the responsibility of monitoring
 # the network, so enter active mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_active_mode
 ;;
 WARNING)
 UNKNOWN)
 # The master NetSaint process may or may not
 # be running.. We won't do anything here, but
 # to be on the safe side you may decide you
 # want the slave host to become the master in
 # these situations...
 ;;
 RECOVERY)
 # The master NetSaint process running again!
 # We should go back to being the slave host,
 # so enter standby mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_standby_mode
 ;;
 esac
 ;;
esac
exit 0

What This Does For Us

When things first start out, host A (the master host) is in active mode. This means that it monitors all services and sends out notifications if there are problems or recoveries. Host E (the slave host) is in
standby mode, which means that it will monitor all services but will not send out any notifications.

The NetSaint process on host E becomes the master host when...
Host A goes down (the handle-master-host-event host event handler is executed).●

The NetSaint process on host A is not running (the handle-master-proc-event service event handler is executed).●

When the NetSaint process on host E has entered active mode, it will be able to send out notifications about any service or host problems or recoveries. At this point host E has effectively taken over the
responsibility of monitoring the network!

The NetSaint process on host E returns to being the slave host when...
Host A has recovers (the handle-master-host-event host event handler is executed).●

The NetSaint process on host A recovers (the handle-master-proc-event service event handler is executed).●

When the NetSaint process on host E has entered standby mode, it will not send out notifications about any service or host problems or recoveries. At this point host E has handed over the responsibilities
of monitoring the network back to host A. Everything is now as it was when we first started!

Time Lags

Redundancy in NetSaint is by no means perfect. One of the more obvious problems is the lag time between the master host failing and the slave host taking over. This is affected by the following...
The time between a failure of the master host and the first time the slave host detects a problem●

The time needed to verify that the master host really does have a problem (using service or host check retries on the slave host)●

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (3 of 8) [6/28/2000 8:00:45 AM]

The time between the execution of the event handler and the next time that NetSaint checks for external commands●

You can minimize this lag by...
Ensuring that the NetSaint process on host E (re)checks one or more services at a high frequency. This is done by using the check_interval and retry_interval arguments in each service definition.●

Ensuring that the number of host rechecks for host A (on host E) allow for fast detection of host problems. This is done by using the max_attempts argument in the host definition.●

Increase the frequency of external command checks on host E. This is done by modifying the command_check_interval option in the main configuration file.●

When NetSaint recovers on the host A, there is also some lag time before host E returns to standby mode. This is affected by the following...
The time between a recovery of host A and the time the NetSaint process on host E detects the recovery●

The time between the execution of the event handler on host B and the next time the NetSaint process on host E checks for external commands●

The exact lag times between the transfer of monitoring responsibilities will vary depending on how many services you have defined, the interval at which services are checked, and a lot of pure chance. At
any rate, its definitely better than nothing...

Special Cases

Here is one thing you should be aware of... If host A goes down, host E will switch to active mode and take over the responsibilities of monitoring. When host A recovers, host E will switch to standby
mode. If - when host A recovers - the NetSaint process on host A does not start up properly, there will be a period of time when neither host is monitoring the network! Fortunately, the service check logic
in NetSaint accounts for this. The next time the NetSaint process on host E checks the status of the NetSaint process on host A, it will find that it is not running. Host E will then switch back to active
mode and take over all responsibilities of monitoring.

The exact amount of time that neither host is monitoring the network is hard to determine. Obviously, this period can be minimized by increasing the frequency of service checks (on host E) of the
NetSaint process on host A. The rest is up to pure chance, but the total "blackout" time shouldn't be too bad...
Scenario 2 - A Simple Way To Implement Redundancy Across Network Segments

Introduction

If you're monitoring hosts that reside on different network segments, you're going to need a more substantial redundancy model that described in scenario 1. The following example is more complex than
that in the first scenario, but the logic behind it should become clear if you study it closely enough.

Goals

The goal of this type of redundancy implementation is for a "slave" host running NetSaint to take over the job of monitoring the entire network if:
The "master" host that runs NetSaint is down or unreachable or...1.
The NetSaint process on the "master" host stops running for some reason2.

Network Layout Diagram

The diagram below shows a relatively simple network setup with host on two network segments. For this scenario I will be assuming that hosts A and F are both running NetSaint and are monitoring all
the hosts shown. Host A will be considered the "master" host and host F will be considered the "slave" host. Nodes H and I are routers that lie between the two network segments.

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (4 of 8) [6/28/2000 8:00:45 AM]

Initial Program Modes

For this example, the master host (host A) should have its initial program mode set to active, while the slave host (host F) should have its initial program mode set to standby.

Initial Configuration

Next we need to consider the differences between the host configuration files on the master and slave hosts...

I will assume that you have the master host (host A) setup to monitor services on all hosts shown in the diagram above. The slave host (host F) should be setup to monitor the same services and hosts, with
the following additions in the configuration file...

The host definition for host A (in the host F configuration file) should have a host event handler defined. Lets say the name of the host event handler is handle-master-host-event.●

The configuration file on host F should have a service defined to check the status of the NetSaint process on host A. Lets assume that you define this service check to run the check_netsaint plugin
on host A. This can be done by using one of the methods described in this FAQ.

●

The service definition for the NetSaint process check on host A should have an event handler defined. Lets say the name of the service event handler is handle-master-proc-event.●

The host definitions for both host H and I should have event handlers defined. Lets say the name of the host event handler in both definitions is handle-router-event●

It is important to note that host A (the master host) has no knowledge of host F (the slave host). In this scenario it simply doesn't need to. Of course you may be monitoring services on host F from host A,
but that has nothing to do with the implementation of redundancy...

Event Handler Command Definitions

We need to stop for a minute and describe what the command definitions for the event handlers on the slave host look like. Here is an example...

command[handle-master-host-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-host-event $HOSTSTATE$ $STATETYPE$
command[handle-master-proc-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-proc-event $SERVICESTATE$ $STATETYPE$
command[handle-router-event]=/usr/local/netsaint/libexec/eventhandlers/handle-router-event $HOSTSTATE$ $STATETYPE$

This assumes that you have placed the event handler scripts in the /usr/local/netsaint/libexec/eventhandlers directory. You may place them anywhere you wish, but you'll need to modify the examples I've
given here.

Event Handler Scripts

Okay, now lets take a look at what the event handler scripts look like...

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (5 of 8) [6/28/2000 8:00:45 AM]

Host Event Handler (handle-master-host-event)

#!/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
 case "$1" in
 DOWN)
 # The master host has gone down!
 # We should now become the master host and take
 # over the responsibilities of monitoring the
 # network, so enter active mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_active_mode
 ;;
 UP)
 # The master host has recovered!
 # We should go back to being the slave host and
 # let the master host do the monitoring, so
 # enter standby mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_standby_mode
 ;;
 esac
 ;;
esac
exit 0

Service Event Handler (handle-master-proc-event)

#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)

 case "$1" in

 CRITICAL)
 # The master NetSaint process is not running!
 # We should now become the master host and
 # take over the responsibility of monitoring
 # the network, so enter active mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_active_mode
 ;;

 WARNING)
 ;;
 UNKNOWN)
 ;;
 # The master NetSaint process may or may not
 # be running.. We won't do anything here, but
 # to be on the safe side you may decide you
 # want the slave host to become the master in
 # these situations...

 RECOVERY)
 # The master NetSaint process running again!
 # We should go back to being the slave host,
 # so enter standby mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_standby_mode
 ;;
 esac
 ;;
esac
exit 0

Host Event Handler (handle-router-event)

#!/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
 case "$1" in
 DOWN)
 # The router has gone down!
 # We should now become the master host and take
 # over the responsibilities of monitoring the
 # network, so enter active mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_active_mode
 ;;
 UP)
 # The router has recovered!
 # We should go back to being the slave host and
 # let the master host do the monitoring, so
 # enter standby mode...
 /usr/local/netsaint/libexec/eventhandlers/enter_standby_mode

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (6 of 8) [6/28/2000 8:00:45 AM]

 ;;
 esac
 ;;
esac
exit 0

What This Does For Us

When things first start out, host A (the master host) is in active mode. This means that it monitors all services and sends out notifications if there are problems or recoveries. Host F (the slave host) is in
standby mode, which means that it will monitor all services but will not send out any notifications.

The NetSaint process on host F becomes the master host when...
Host A goes down (the handle-master-host-event host event handler is executed).●

The NetSaint process on host A is not running (the handle-master-proc-event service event handler is executed). If either router H or I goes down (the handle-router-event host event handler is
executed).

●

When the NetSaint process on host F has entered active mode, it will be able to send out notifications about any service or host problems or recoveries. At this point host F has effectively taken over the
responsibility of monitoring the network!

The NetSaint process on host F returns to being the slave host when...
Host A has recovers (the handle-master-host-event host event handler is executed).●

The NetSaint process on host A recovers (the handle-master-proc-event service event handler is executed). If either router H or I recovers (the handle-router-event host event handler is executed).●

When the NetSaint process on host F has entered standby mode, it will not send out notifications about any service or host problems or recoveries. At this point host F has handed over the responsibilities
of monitoring the network back to host A. Everything is now as it was when we first started!

Shortcomings

This simple example has some shortcomings that you should be aware of. Note that when one of the routers goes down, the NetSaint process on host F acts as if the NetSaint process on host A is no longer
running. This may or may not be the case. If the process on host A is running, you'll get potentially bogus notifications being sent out from both NetSaint processes...

As an example, lets say that router H goes down and severs the connection between the two network segments, but everything else is okay. From the view of the NetSaint process on host F, all hosts
beyond router H (hosts A, B, C, D, E, and I) are unreachable. At the same time, the NetSaint process on host A (which is on the other side of router H) thinks that all hosts beyond router H (hosts F and G)
are unreachable. Both NetSaint processes see that router H is down, but that's the only thing they agree on. This might lead to an enormous amount of bogus notifications being sent out to you. You could
potentially get two notifications about router H being down (one from each process) and one notification about every other host on the network being unreachable!
Scenario 3 - A Smarter Way To Implement Redundancy Across Network Segments

Introduction

This is basically just an improvement in the redundancy logic described above in scenario 2. What we will do is make both monitoring hosts aware of each other. In scenario 2, the slave host (host F) knew
about the master host (host A), but the master was unaware of the slave. In this scenario both the slave and master hosts will be aware of each other, and will use that information to make better decisions
on how to take over or adjust monitoring responsibilities.

Goals

We have several goals with this redundancy scenario...

The "slave" host running NetSaint should take over the job of monitoring the entire network if:
The NetSaint process on the "master" host stops running for some reason1.
The "master" host that runs NetSaint is down2.
The "master" host becomes unreachable due to one or both of the routers going down and the "master" host was last known to be either down or unreachable3.

The "slave" host running NetSaint should take over the job of monitoring only its local network segment if:
The "master" host becomes unreachable due to one or both of the routers going down and the "master" host was last known to be up1.

The "master" host running NetSaint should stop monitoring the entire network and change to monitoring only its local network segment if:

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (7 of 8) [6/28/2000 8:00:45 AM]

The "slave" host becomes unreachable due to one or both of the routers going down and the "slave" host was last known to be up1.

Network Layout Diagram

See network diagram for scenario 2 - its the same...

Initial Program Modes

The master host (host A) should have its initial program mode set to active, while the slave host (host F) should have its initial program mode set to standby. This is the same setup as described in scenario
2.

Initial Configuration

Scenario 4 - Implementing Multiple Redundancy Methods

If you've got a large, complex network and are paranoid about ensuring that NetSaint monitors everything, you'll probably want to look into implementing multiple redundancy methods. This basically
involves combining the redundancy methods described in scenarios 1 and 3 to create a pool of monitoring hosts that are all aware of each other's state and can take over all or part of the network
monitoring responsibilites if necessary. If you found the concepts presented in scenario 3 difficult to understand, you should be aware that the complexity of configuration files and event handler scripts
will grow exponentially as you add additional monitoring hosts to a multiple redundancy setup.

Since there are endless possibilities for implementing multiple redundancy methods, I won't try to discuss them here. If you decide to implement mixed redundancy methods on your network be prepared
to spend a lot of time analyzing your network structure, its critical failure points (i.e. routers, firewalls, etc.), the location of monitoring hosts, and what should happen at each monitoring host in the event
of a problem. When implementing multiple redundancy methods you cannot simply create event handler scripts based on the state of routers, etc. - you must also take into account the state of other
monitoring hosts on the local network segment and (possibly) on other segments.

Redundant Network Monitoring

http://www.netsaint.org/docs/0_0_6/redundancy.html (8 of 8) [6/28/2000 8:00:45 AM]

NetSaint Plugins

Obtaining Plugins

Note: Plugin development for NetSaint has been moved over to SourceForge. The NetSaint plugin
development project page (where the latest version of by plugins can always be found) is located at
http://netsaintplug.sourceforge.net/.

In addition to the plugins distributed from the SourceForge project, you can also find miscellanous
plugins that have been contributed by users in the contrib downloads area of the NetSaint site at
http://www.netsaint.org/download/contrib/plugins/

Command Definition Examples For Services

If you're looking for some examples on how to define commands for service or host checks, you can look
at the old plugin documentation here. Please note that this documentation is quite old and may contain
some errors, as plugin arguments may have changed.

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/plugins.html [6/28/2000 8:00:47 AM]

http://www.sourceforge.net/
http://netsaintplug.sourceforge.net/
http://www.netsaint.org/download/contrib/plugins

Configuring NetSaint

Configuration Overview

Configuring NetSaint is done by editing three files - the "main" configuration file, the "host"
configuration file, and the CGI configuration file.

Main Configuration File

Documentation for the main configuration file can be found here. A sample main configuration file is
generated automatically when you run the configure script before compiling the binaries. Look for it
either in the distribution directory or the etc/ subdirectory of your installation. When you install the
sample config files using the make install-config command, a sample main configuration file will be
placed into your settings directory (usually /usr/local/netsaint/etc). The default name of the main
configuration file is netsaint.cfg.

Host Configuration File

Documentation for the host configuration file can be found here. A sample host configuration file is
generated automatically when you run the configure script before compiling the binaries. Look for it
either in the distribution directory or the etc/ subdirectory of your installation. When you install the
sample config files using the make install-config command, a sample main configuration file will be
placed into your settings directory (usually /usr/local/netsaint/etc). The default name of the host
configuration file is hosts.cfg. The "host" configuration file is where you define hosts, host groups,
contacts, contact groups, commands, time periods, and services.

CGI Configuration File

Documentation for the CGI configuration file can be found here. A sample CGI configuration file is
generated automatically when you run the configure script before compiling the binaries. When you
install the sample config files using the make install-config command, the CGI configuration file will be
placed in the same directory as the main and host config files (usually /usr/local/netsaint/etc). The default
name of the CGI configuration file is nscgi.cfg.

Where To Go From Here

Once you configure NetSaint to your liking you will need to verify the data you entered before starting to
monitor anything.

Configuring NetSaint

http://www.netsaint.org/docs/0_0_6/config.html [6/28/2000 8:00:48 AM]

Installing The Web Interface

Notes

In these instructions I will assume that you are running the Apache web server on your machine. If you
are using some other web server, you'll have to make changes where appropriate.

Configuring Aliases For The HTML Files And CGIs

In order to make the HTML files and CGIs accessible via the web, you'll have to edit your Apache web
server configuration as follows...

Add a line in the httpd.conf file as follows (change to match the directory structure for you
installation)...

Alias /netsaint/ /usr/local/netsaint/share/

This will allow you to use an URL like http://yourmachine/netsaint/ to view the HTML web interface
and documentation. The alias should be the same value that you entered for the --with-htmurl argument
to the configure script (default is /netsaint/).

You'll need to create an alias for the NetSaint CGIs as well. The default installation expects to find them
within http://yourmachine/cgi-bin/netsaint/, although this can be changed using the --with-cgiurl
option in the configure script. Anyway, add something like the following to your httpd.conf file
(changing it to match any directory differences on your system)...

ScriptAlias /cgi-bin/netsaint/ /usr/local/netsaint/sbin/

Important: The ScriptAlias entry for the NetSaint CGIs must precede the standard 'ScriptAlias /cgi-bin/
/some...where../' directive already present in the configuration file. If it doesn't, you will most likely be
unable to access the CGIs.

Once you've editing the Apache configuration file, you'll need to restart the web server with a command
like this...

/etc/rc.d/init.d/httpd restart

Once you've gotten the web server restarted, there is just one minor thing you need to verify. Check the
CGI configuration file (nscgi.cfg) in the sbin/ subdirectory of your NetSaint installation and verify that
the main_config_file variable points to the correct location of the main configuration file on your
system. The CGIs will need to know this in order to find your current status log, history log, etc.

Don't forget to check and see if the changes you made to Apache work. You should be able to point your
web browser at http://yourmachine/netsaint and get the web interface for NetSaint. The CGIs may not
display any information, but this will be remedied once you configure web server authentication for the
CGIs and start NetSaint.

Where To Go From Here

Installing The Web Interface

http://www.netsaint.org/docs/0_0_6/installweb.html (1 of 2) [6/28/2000 8:00:50 AM]

http://www.apache.org/

Once you have configured the web interface properly, you'll need to enable web server authentication for
accessing the CGIs and configure user authorization information. Details on doing this can be found
here.

Installing The Web Interface

http://www.netsaint.org/docs/0_0_6/installweb.html (2 of 2) [6/28/2000 8:00:50 AM]

Authentication And Authorization In The CGIs

Notes

Throughout these instructions I will be assuming that you are running the Apache web server on your
machine. If you are running some other web server, you will have to make some adjustments.

Definitions

Throughout these instructions I will be using the following terms, so you should understand what they
mean...

An authenticated user is an someone who has authenticated to the web server with a username and
password and has been granted access to the CGIs by the web server

●

An authenticated contact is an authenticated user whose username matches the short name of a
contact definition in the host configuration file.

●

Index

Configuring web server authentication
Setting up authenticated users
Enabling authentication/authorization functionality in the CGIs
Default permissions to CGI information
Granting additional permissions to CGI information
Authentication on secure web servers

Configuring Web Server Authentication

The first step to configuring your web server for authentication is to make sure the access.conf file
contains an 'AuthOverride AuthConfig' statement in it for the NetSaint CGI-BIN directory. If it doesn't,
you'll have to add something similiar to the following to your access.conf file. Note that you will have to
restart the web server in order for this change to take effect.

<Directory /usr/local/netsaint/sbin>
AllowOverride AuthConfig
order allow,deny
allow from all
Options ExecCGI
</Directory>

If you also want to require authentication for access the HTML pages for NetSaint, add something
similiar to the following in the access.conf file as well.

<Directory /usr/local/netsaint/share>
AllowOverride AuthConfig

Authentication And Authorization In The CGIs

http://www.netsaint.org/docs/0_0_6/cgiauth.html (1 of 4) [6/28/2000 8:00:53 AM]

http://www.apache.org/

order allow,deny
allow from all
</Directory>

The second step is to create a file named .htaccess in the root your CGI directory (and optionally also
you HTML directory) for NetSaint (usually /usr/local/netsaint/sbin and /usr/local/netsaint/share,
respectively). The file(s) should have contents similiar to the following...

AuthName "NetSaint Access"
AuthType Basic
AuthUserFile /usr/local/netsaint/etc/htpasswd.users
require valid-user

Setting Up Authenticated Users

Now that you've configured the web server to require authentication for access to the CGIs, you'll need to
configure users who can acess the CGIs. This is done by using the htpasswd command supplied with
Apache.

Running the following command will create a new file called htpasswd.users in the
/usr/local/netsaint/etc directory. It will also create an username/password entry for netsaintadmin. You
will be asked to provide a password that will be used when netsaintadmin authenticates to the web
server.

htpasswd -c /usr/local/netsaint/etc/htpasswd.users netsaintadmin

Continue adding more users until you've created an account for everyone you want to access the CGIs.
Use the following command to add additional users, replacing <username> with the actual username you
want to add. Note that the -c option is not used, since you already created the initial file.

htpasswd /usr/local/netsaint/etc/htpasswd.users <username>

Okay, so you're done with the first part of what needs to be done. If you point your web browser to your
NetSaint CGIs you should be asked for a username and password. If you have problems getting user
authentication to work at this point, read your webserver documentation for more info.

Enabling Authentication/Authorization Functionality In The CGIs

The next thing you need to do is make sure that the CGIs are configured to use the authentication and
authorization functionality in determining what information and/or commands users have access to. This
is done be setting the use_authentication variable in the CGI configuration file to a non-zero value.
Example:

use_authentication=1

Okay, you're now done with setting up basic authentication/authorization functionality in the CGIs.

Default Permissions To CGI Information

So what default permissions do users have in the CGIs by default when the authentication/authorization

Authentication And Authorization In The CGIs

http://www.netsaint.org/docs/0_0_6/cgiauth.html (2 of 4) [6/28/2000 8:00:53 AM]

functionality is enabled?

CGI Data Authenticated Contacts* Other Authenticated Users*

Host Status Information Yes No
Host Configuration Information Yes No
Host History Yes No
Host Notifications Yes No
Host Commands Yes No
Service Status Information Yes No
Service Configuration Information Yes No
Service History Yes No
Service Notifications Yes No
Service Commands Yes No
All Configuration Information No No
System/Process Information No No
System/Process Commands No No

Authenticated contacts* are granted the following permissions for each service for which they are
contacts (but not for services for which they are not contacts)...

Authorization to view service status information●

Authorization to view service configuration information●

Authorization to view history and notifications for the service●

Authorization to issue service commands●

Authenticated contacts* are granted the following permissions for each host for which they are contacts
(but not for hosts for which they are not contacts)...

Authorization to view host status information●

Authorization to view host configuration information●

Authorization to view history and notifications for the host●

Authorization to issue host commands●

Authorization to view status information for all services on the host●

Authorization to view configuration information for all services on the host●

Authorization to view history and notification information for all services on the host●

Authorization to issue commands for all services on the host●

It is important to note that by default no one is authorized for the following...
Viewing the raw log file via the showlog CGI●

Viewing NetSaint process information via the extended information CGI●

Issuing NetSaint process commands via the command CGI●

Viewing host group, contact, contact group, time period, and command definitions via the●

Authentication And Authorization In The CGIs

http://www.netsaint.org/docs/0_0_6/cgiauth.html (3 of 4) [6/28/2000 8:00:53 AM]

configuration CGI
●

You will undoubtably want to access this information, so you'll have to assign additional rights for
yourself (and possibly other users) as described below...

Granting Additional Permissions To CGI Information

You can grant authenticated contacts or other authenticated users permission to additional information
in the CGIs by adding them to various authorization variables in the CGI configuration file. I realize that
the available options don't allow for getting really specific about particular permissions, but its better
than nothing..

Additional authorization can be given to users by adding them to the following variables in the CGI
configuration file...

authorized_for_system_information●

authorized_for_system_commands●

authorized_for_configuration_information●

authorized_for_all_hosts●

authorized_for_all_host_commands●

authorized_for_all_services●

authorized_for_all_service_commands●

CGI Authorization Requirements

If you are confused about the authorization needed to access various information in the CGIs, read the
Authorization Requirements section for each CGI as described here.

Authentication On Secured Web Servers

If your web server is located in a secure domain (i.e., behind a firewall) or if you are using SSL, you can
define a default username that can be used to access the CGIs. This is done by defining the
default_user_name option in the CGI configuration file. By defining a default username that can access
the CGIs, you can allow users to access the CGIs without necessarily having to authenticate to the web
server.. You may want to use this to avoid having to use basic web authentication, as basic authentication
transmits passwords in clear text over the Internet.

Important: Do not define a default username unless you are running a secure web server and are sure
that everyone who has access to the CGIs has been authenticated in some manner! If you define this
variable, anyone who has not authenticated to the web server will inherit all rights you assign to this
user!

Authentication And Authorization In The CGIs

http://www.netsaint.org/docs/0_0_6/cgiauth.html (4 of 4) [6/28/2000 8:00:53 AM]

Verifying Your NetSaint Configuration

Verifying The Configuration From The Command Line

Once you've entered all the necessary data into the configuration file, its time to do a sanity check.
Everyone make mistakes from time to time, so its best to verify what you've entered. NetSaint
automatically runs a "pre-flight check" before before it starts monitoring, but you also have the option of
running this check manually before attempting to start NetSaint. In order to do this, you must start
NetSaint with the -v command line argument as follows...

./netsaint -v <main_config_file>

Note that you should be entering the path/filename of your main configuration file as the second
argument and not your host configuration file. NetSaint will read your main configuration file and from
there determine where your host configuration file resides (remember the cfg_file option in the main
config file?).

Relationships Verified During The Pre-Flight Check

During the "pre-flight check", NetSaint verifies that you have defined the data relationships necessary for
monitoring. Services, hosts, host groups, contacts, contact groups, and time periods are all related and
need to be setup properly in order for things to run. This is a list of the basic things that NetSaint attempts
to check before it will start monitoring...

Verify that all contacts are a member of at least one contact group.1.
Verify that all contacts specified in each contact group are valid.2.
Verify that all hosts are a member of at least one host group.3.
Verify that all hosts specified in each host group are valid.4.
Verify that all hosts have at least one service associated with them.5.
Verify that all commands used in service and host checks are valid.6.
Verify that all commands used in service and host event handlers are valid.7.
Verify that all commands used in contact service and host notifications are valid.8.
Verify that all notification time periods specified for services, hosts, and contact are valid.9.
Verify that all service check time periods specified for services are valid.10.

Fixing Configuration Errors

If you've forgotten to enter some critical data or just plain screwed things up, NetSaint will spit out a
warning or error message that should point you to the location of the problem. Error messages generally
print out the line in the configuration file that seems to be the source of the problem. On errors, NetSaint
will often exit the pre-flight check and return to the command prompt after printing only the first error
that it has encountered. This is done so that one error does not cascade into multiple errors as the
remainder of the configuration data is verified. If you get any error messages you'll need to go and edit
your configuration files to remedy the problem. Warning messages can generally be safely ignored, since

Verifying Your NetSaint Configuration

http://www.netsaint.org/docs/0_0_6/verifyconfig.html (1 of 2) [6/28/2000 8:00:55 AM]

they are only recommendations and not requirements.

Where To Go From Here

Once you've verified your configuration files and fixed any errors, you can be reasonably sure that
NetSaint will start monitoring the services you've specified. On to starting NetSaint!

Verifying Your NetSaint Configuration

http://www.netsaint.org/docs/0_0_6/verifyconfig.html (2 of 2) [6/28/2000 8:00:55 AM]

Program Modes

Introduction

The idea of program modes is quite simple, but you need to understand the difference between them
before you start doing anything like implementing redundant monitoring hosts. There are two types of
program modes - Active and Standby...

Active Mode

This is the default program mode for NetSaint. While in active mode, NetSaint will monitor all services
and hosts that you have defined in your host configuration file(s). When a problem arises with one of
those services or hosts, NetSaint will send out notifications to all appropriate contacts. This is equivalent
to how previous versions of NetSaint worked.

Standby Mode

While in standby mode, NetSaint will continue to monitor all services and hosts you defined in your host
configuration file(s), but it will not send out notifications to any contacts when problems arise. This is
particularly useful when implementing redudant monitoring hosts, and is equivalent to temporarily
disabling notifications for all defined services and hosts. NetSaint will not send out notifications to any
contacts until it returns to active mode.

Configuring The Initial Program Mode

By default, NetSaint will enter active mode when it (re)starts. If you wish to change the initial program
mode to standy, you'll have to use the program_mode option in the main configuration file.

Changing Program Modes During Runtime

You can change the current program mode between active and standby by issuing an external command
to NetSaint via the command file. Of course, this assumes that you have enabled external command
checks. For more information on external commands, click here.

Two sample shell scripts (enter_active_mode and enter_standy_mode) are provided in the
sample-scripts/ subdirectory of the NetSaint distribution as examples of how to change the program
mode during runtime. You will have to modify the scripts to match the location of your command file
before you can use them.

Program Modes

http://www.netsaint.org/docs/0_0_6/programmodes.html [6/28/2000 8:00:57 AM]

Wednesday, June 28, 1999

 Site Contents
System News
Features
Signup
FAQ Database
Support
Customers
Services
Meet the Staff
About Us
Contact Us
Message Board
Press Release
Focalmail
Home Page

 Related Links
Linux Stuff
Computer
Search Engines
News Sources
Cool Stuff

Oops!!

The user, site or other such Web-related resource you're trying to find seems to be
missing, outdated or just plain MIA. Perhaps you'll find what you're looking for by going to
the linuxbox homepage and searching from there!

Check for the availability of your domain name!

| FEATURES | FAQ | SUPPORT | CUSTOMERS | SERVICES | SIGNUP | ABOUT | CONTACT | MESSAGE BOARD |

The Linuxbox® Network - 404 (File Not Found)

http://www.linuxave.net/error_docs/404error.html [6/28/2000 8:01:00 AM]

http://www.linuxave.net/contact.html
http://www.linuxave.net/cgi-bin/faq
http://www.linuxave.net/domain/gnu.php3
http://www.linuxave.net/index.html
http://www.linuxave.net/news.html
http://www.linuxave.net/domain/features.html
http://oasis2.openave.net/servlet/Register.jsp
http://www.linuxave.net/cgi-bin/faq
http://www.linuxave.net/contact.html
http://www.linuxave.net/domain/gnu.php3
http://www.linuxave.net/domain/webinfo.html
http://www.linuxave.net/staff/index.html
http://www.linuxave.net/about.html
http://www.linuxave.net/contact.html
http://www.linuxave.net/forum/cgi-bin/Ultimate.cgi
http://www.linuxave.net/pr.html
http://www.linuxave.net/focalmail
http://www.linuxave.net/index.html
http://www.linuxave.net/links.html#linux
http://www.linuxave.net/links.html#computer
http://www.linuxave.net/links.html#search
http://www.linuxave.net/links.html#news
http://www.linuxave.net/links.html#other
http://www.linuxbox.com/
http://ad1.trafficx.com/servlet/txLink?id=I016609&page=51
http://www.linuxave.net/domain/features.html
http://www.linuxave.net/cgi-bin/faq
http://www.linuxave.net/contact.html
http://www.linuxave.net/domain/gnu.php3
http://www.linuxave.net/domain/features.html
http://www.linuxave.net/domain/signup.pl
http://www.linuxave.net/about.html
http://www.linuxave.net/contact.html
http://www.linuxave.net/forum

Frequently Asked Questions (FAQs)

Index

Items in red seem to be the biggest problems for people - read these first..

Problems compiling NetSaint
Problems compiling the statusmap CGI
"NetSaint process may not be running" warnings in the CGIs
Hosts are incorrectly listed as being DOWN and/or services have a status of "HOST DOWN"
When hosts go down, I get notification about services instead of hosts and the service notifications
contain incorrect data

Debugging "unknown variable" errors during configuration verification or runtime
Running multiple instances of NetSaint on the same machine
Changing the contents of the default web page
Missing data in the CGIs or errors about improper authorization
Problems finding the traceroute CGI
Requiring users to authenticate before accessing web interface
Displaying pretty host icons
Errors commiting commands via the command CGI
Monitoring virtual web servers that use host headers
Monitoring remote host information
Monitoring printers
Monitoring Windows NT servers
Sending SNMP traps to management hosts
Logging events to an external database
Troubleshooting problems with NetSaint

I'm having trouble compiling Netsaint - What can I do?

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (1 of 11) [6/28/2000 8:01:09 AM]

If you are running Linux, this is probably because you don't have the gcc compiler installed on your
system. Either install the compiler yourself or ask your sysadmin to do it for you. If you are running
SunOS, IRIX, HP-UX, *BSD, etc. make have to tweak the Makefile a bit. This may involve changing
the compiler name, compiler options, and/or linker options.

If you're getting errors about the strncat(), strncpy(), or snprintf() functions, you probably don't have
the glibc libraries installed on your system. This tends to happen most often on HP-UX and Solaris
boxes. I've tried to prevent potential buffer overflows in NetSaint and the CGIs by using these functions,
so they are all over the code. If you don't want to install the glibc libraries for some reason, you'll have
to find some other way to get everything compiled. If all you're missing is the snprintf() function, try
grabbing the snprintf.c file from http://www.ijs.si/software/snprintf/ and adding it to the Makefiles so
that it gets included during when you compile things.

If you have to make changes to the Makefile, configure script, or any code in order to compile NetSaint,
let me know what OS you are running and what changes you had to make. I would like to include this
information in future releases.

I can't find or am having trouble compiling the statusmap CGI...

If you compile all the CGIs, but don't find the statusmap CGI, you probably don't have Thomas Boutell's
gd library installed correctly on your system. The gd library (and thus the statusmap CGI) also requires
that you also have the zlib and png libraries installed. Version 1.6.3 or higher of the gd library is
required, as the CGI generates a PNG image of your network layout.

If you find that the statusmap CGI has not been compiled, make sure you have the gd library installed on
your system and rerun the configure script with the following options:

./configure --with-gd-lib=LIBDIR --with-gd-inc=INCDIR

Replace LIBDIR with the directory in which the gd library is installed (usually /usr/lib or /usr/local/lib)
and replace INCDIR with the directory in which the header files for the gd library are installed (usually
/usr/include or /usr/local/include).

After you rerun the configure script, make sure to recompile the CGIs and install them in their proper
location.

"NetSaint process may not be running" warnings in the CGIs

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (2 of 11) [6/28/2000 8:01:09 AM]

http://www.ijs.si/software/snprintf/
http://www.boutell.com/gd

If you are getting erroneous messages about the NetSaint process not running while viewing the CGIs,
its probably due to one of the following items:

You haven't defined a command to check the status of the NetSaint process. This is done by
supplying a value for the process_check_command directive in the CGI configuration file.

1.

If you have defined a command, perhaps it is not returning the proper exit code. The command
must follow the same rules as the plugin: a return code of 0 indicates that NetSaint is running,
values of 1, 2, or -1 indicate that NetSaint is either not running or in some degraded state.

2.

If you have defined a process check command that uses the check_netsaint plugin, make sure that
the plugin is functioning as it should. Execute the check_netsaint plugin from the command line
and check the result. If the plugin is reporting that the NetSaint process cannot be found or if it
returns a "Could not open pipe" message, you may need to edit the PS_RAW_COMMAND
definition in the common/config.h file of the plugin distribution to match the syntax for the ps
command on your system. For example, under FreeBSD you should use either "/bin/ps -ao 'state
user ppid args'" or "/bin/ps -axo 'state user ppid command'" (it seems to vary). Once you've
changed the PS_RAW_COMMAND definition, recompile the plugins and test the newly
compiled check_netsaint plugin to see if it works.

3.

The CGIs will not allow you to sumbit any commands while they think the NetSaint process is not
running. This is done primarily to prevent people from accidentally submitting multiple shutdown/restart
commands that don't get processed until NetSaint is started at some future time.

Hosts are incorrectly listed as being DOWN and/or services have a status of "HOST DOWN"

This seems to be one of the biggest issues for new users. 99.9% of the time this problem is due to an
incorrect command definition for the host check command you specified in the host definition.

A major cause for this problem was due to a syntax change to the command line arguments of the
check_ping plugin. You need to make sure that the host check command is using the proper syntax for
the version of the check_ping plugin that you have. You can check to see if the command works
properly by executing it manually from the command line. Recent versions of the check_ping plugin
require that a -p flag be used to specify the number of packets to send. Previous versions of the plugin
did not require this flag - that's where the problem lies. Check your host check command definition(s) to
make sure they are using the proper syntax. Example:

command[check-host-alive]=/usr/local/netsaint/libexec/check_ping $HOSTADDRESS$ 100 100 1000.0
1000.0 -p 1

Important! Just because you have a service that is monitoring ping statistics for a host does not mean
that the actual host status is being checked. The status of a host is only checked when a service check
results in a non-OK state or if the host was previously down and a service check results in an OK state.

Some symptoms of incorrect host check commands include:
Hosts incorrectly being listed as DOWN1.

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (3 of 11) [6/28/2000 8:01:09 AM]

Services that have a status of "HOST DOWN", even though the host they reside on is actually UP2.
Alternating alerts/notifications about host problems and recoveries3.

When hosts go down, I get notification about services instead of hosts and the service notifications
contain incorrect data

Several people have reported this problem and I spent hours trying to find the problem until I realized it
wasn't a bug in the code. If you get service notifications when you should be getting host notifications
(and the service notifications you get seem to contain bogus data), check your contact definitions in the
host config file. They are most likely incorrect.

Make sure that you are not using the same notification command for service and host notification
commands. Service and host notifications are very different and make use of macros which are not
transferrable between each type. Look at the sample host config file provided with NetSaint to see what
the contact definitions look like and how the service and host notification commands differ. If you're
wondering what macros can be used in either type of notification, look at this table.

Debugging "unknown variable" errors during configuration file verification or runtime

When trying to run NetSaint or verify your configuration file data using the -v argument, NetSaint may
print out a message like "Error in configuration file 'xxxxxxx.cfg' - Line 34 (Unknown variable)". A few
simple checks will usually resolve this problem...

Make sure you are passing the path to the main configuration file and not the host configuration
file on the command line. Many people have made this mistake. The correct syntax would be as
follows (modified for your system, of course):
./netsaint -v /usr/local/netsaint/etc/netsaint.cfg

1.

Make sure that you don't have any invalid variables defined in your configuration file. Notice that
the error message will contain a reference to the name of the configuration file and the line
number on which the error was encountered. Make sure that all comment lines contain a pound
sign (#) in the first character of the line. If you're not sure about what variables are valid, check
the documentation for the main and host configuration files.

2.

Make sure all variable identifiers are in lower case. Example:
"admin_email=someaddress@somedomain.com" instead of
"ADMIN_EMAIL=somedomain@nowhere.com"

3.

How do I run multiple instances on NetSaint on the same machine?

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (4 of 11) [6/28/2000 8:01:09 AM]

You can run multiple instances of NetSaint on the same machine, if you ensure that the following
variables are unique for each instance of NetSaint...

Main configuration file●

Temp file●

Status file●

External command file●

Log file●

Log archive path●

Lock file●

If you are using the web interface, you will have to setup separate directories to hold the CGIs for each
instance of NetSaint and create appropriate script aliases in your web server configuration file. This is
necessary because CGI configuration file must be unique for each setup of CGIs, as it contains a
reference to which main configuration file the CGIs should read.

One last thing you should check is your init script (if you're using one). The init script should start, stop,
restart, and reload all copies of NetSaint (if that's what you want it to do).

How do I change the contents of the default web page?

Several people have asked how to modify the default web page so that service detail or service overview
information is displayed in the right hand frame (instead of the intro page). You can do this rather easily
by modifying the frameset information in the index.html page (located in the root web directory for
NetSaint) as follows..

Default Frame Configuration

<FRAMESET BORDER="0" FRAMEBORDER="0" FRAMESPACING="0" COLS="180,*">
<FRAME SRC="side.html" NAME="side" TARGET="main">
<FRAME SRC="main.html" NAME="main">
</FRAMESET>

Modified Configuration

<FRAMESET BORDER="0" FRAMEBORDER="0" FRAMESPACING="0" COLS="180,*">
<FRAME SRC="side.html" NAME="side" TARGET="main">
<FRAME SRC="xxxxx" NAME="main">
</FRAMESET>

Replace xxxxx with one of the following values, or anything else you may want...

Option Description
/cgi-bin/netsaint/status.cgi?host=all This will display service status details for all hosts in the

right hand side of the frame

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (5 of 11) [6/28/2000 8:01:10 AM]

/cgi-bin/netsaint/status.cgi?hostgroup=all This will display a service status overview for all
hostgroups in the right hand side of the frame

/cgi-bin/netsaint/showlog.cgi This will display the contents of the log file in the right
hand side of the frame

/cgi-bin/netsaint/history.cgi?host=all This will display the service history for all hosts in the
right hand side of the frame

Read the documentation on the CGIs for more information on what options each supports.

When I access the CGIs I don't see everything I should or I get authorzation errors...

If you believe you are unable to see all the information in the CGIs or if you are getting authorization
errors, you probably haven't configured the web server to require authentication or haven't setup
authorzation correctly. See the documentation on authentication and authorization in the CGIs here.

Where can I find the traceroute CGI?

Newer versions of the check_ping plugin are capable of producing HTML that provides a link to a
traceroute CGI written by Ian Cass. The traceroute CGI is not included in the core distribution of
NetSaint. However, you can find it in the contrib area of the downloads section at
http://www.netsaint.org/download/contrib.

How do I requre users to authenticate before accessing the web interface?

See the documentation on authentication and authorization in the CGIs here.

How do I get those pretty pretty host icons to display in my CGIs?

If you want to associate images with particular hosts for use in the status, status map, status world, and
extended information CGIs, you must define extended host information entries in your CGI
configuration file.

I'm getting errors when attempting to commit commands to NetSaint via the command CGI

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (6 of 11) [6/28/2000 8:01:10 AM]

http://www.netsaint.org/download/contrib

If you are getting 'Could not open command file somefile for update' errors when attempting to
commit commands to NetSaint via the command CGI, the most likely problem is with directory and/or
file permissions. Here is what you can do to fix it. Note: You must be root in order to do some of these
steps...

First, find the user that your web server process is running as. On many systems this is the user nobody,
although it will vary depending on what OS/distribution you are running.

Next, create a new group that will be granted permissions to update the NetSaint command file. Let's say
you want to call the group 'nscmd'. On RedHat Linux you can use the following command to add a new
group (other systems may differ):

/usr/sbin/groupadd nscmd

Next, add all users who should have access to the command file to the group you just created. In this
example we'll just add the user nobody...

/usr/sbin/usermod -G nscmd nobody

Next, create the directory where the command file should be stored. By default, this is
/usr/local/netsaint/var/rw, although it can be changed by modifying the command_file variable.

mkdir /usr/local/netsaint/var/rw

Next, change the group ownership of the directory used to hold the command file...

chown -R .nscmd /usr/local/netsaint/var/rw

Also check the group permissions on the directory. The group you created needs to have write access
there. The last thing you'll have to do is restart your web server with a command similiar to the
following..

/etc/rc.d/init.d/httpd restart

Apparently Apache needs to be restarted in order to inherit the new group permissions you assigned.
That's it. You should be able to commit commands to NetSaint via the CGI now (assuming you have the
proper authorization).

If you supplied the --with-command-grp=somegroup option when running the configure script, you
can create the directory to hold the command file and set the proper permissions by running 'make
install-commandmode'.

How do I monitor virtual web servers that use host headers?

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (7 of 11) [6/28/2000 8:01:10 AM]

If you are running a web server with multiple virtual servers and only one IP address, this applies to you.
Let's say that your web server has an IP address of 192.168.0.1 and two virtual servers running on it -
"www.myfirstdomain.com" and "www.myseconddomain.com". Both of these domain names resolve to
the same IP address (192.168.0.1) during a DNS lookup. The check_http plugin can handle this type of
situation without a problem. You will need to specify the virtual web site name as an additional
command line argument to the plugin (using the -hn option). Example:

command[check_http2]=/usr/local/netsaint/check_http $HOSTADDRESS$ -u / -p 80 -hn $ARG1$

service[myhost]=First Virtual Web Server;3;2;120;1;1;1;check_http2!www.myfirstdomain.com
service[myhost]=Second Virtual Web Server;3;2;120;1;1;1;check_http2!www.myseconddomain.com

The check_http2 command defined here will use the check_http plugin to open a connection to port 80
of the host at IP address 192.168.0.1. It will then send an HTTP/1.1 request for the root document, along
with either a "Host: www.myfirstdomain.com" or "Host: www.myseconddomain.com" in the request
header.

How do I monitor remote host information?

Several people have asked how to use various plugins that check information on the local host to report
information from remote hosts. Various methods for doing this are described below..

If you need to actually execute a plugin on a remote host and get the results back, you can use one of the
following methods...

Use the check_by_ssh "plugin" to execute a plugin on a remote host. The check_by_ssh plugin is
basically a wrapper for executing a plugin on a remote host using SSH. You must have SSH
installed and configured properly in order to use this.

●

Use the nrpe addon to accomplish this. The plugins and the nrpe daemon reside on the remote
host. The check_nrpe plugin (included with the nrpe package) sends a request to the nrpe daemon
to execute the plugin on the remote host and then grabs the results for NetSaint.

●

Use the nrpep addon. This addon works in a similiar manner to the nrpe package, but it encrypts
the transmitted data, runs as a service from inetd, and makes use of the TCP Wrappers package
for access control.

●

Use rsh to execute the plugin remotely, although I guess I wouldn't recommend this..●

If all you need is to check disk space, etc. on a remote host, you can use one of the methods below...
Use one of the plugins included with the netsaint_statd addon for NetSaint. The addon, written by
Charlie Cook, includes a Perl daemon which runs on the remote host and four plugins which are
used to gather the remote host information from the daemon. The daemon is designed to run on
Linux, IRIX, HP-UX, SunOS, and OSF/1 systems. Modifying the code for other systems should
be fairly easy. More on the netsaint_statd plugin can be found here.

●

Use the check_overcr plugin to query information from a remote host. The remote host must be
running Eric Molitor's Over-CR collector in order for this to work.

●

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (8 of 11) [6/28/2000 8:01:10 AM]

http://www.molitor.org/overcr/

Use the check_snmp plugin to check the value of various OIDs on the remote host. You must
have SNMP services installed and running on the remote host in order to do this.

●

How can I monitor NT servers?

The good news is that NT has a lot of performance data that you can monitor. The bad news is that its
difficult to do. Your best bet is probably going to be to install SNMP services on all your NT boxes. Ian
Cass has written a FAQ on how to do this at http://elton.dev.knowledge.com/snmpfaq.html

In order to expose NT performance counters for monitoring, you'll have to run the SNMP service on all
servers you want to monitor. You'll also have to install any necessary performance MIBs for the services
you want to monitor. I believe these can be found in the NT Resource Kit or in various server admin
packages. If you've feeling extra lucky you can try to search the Microsoft site for the terms SNMP and
MIB and maybe you'll find something...

You can search the MRTG mailing list archives for more information on configuring NT servers to
expose various performance counters via SNMP. I know this has been discussed in the past, as many
people are graphing various NT performance statistics using MRTG. In fact, somebody from Microsoft
is actually doing it - you can find their web page at http://snmpboy.rte.microsoft.com/.

Once you've actually got the SNMP stuff working, you can use the check_snmp plugin to query your
NT servers and generate alarms.

A few people are looking into the possibilities of creating a service that runs under NT to facilitate easier
remote monitoring. Once these efforts solidify, an announcement will be made on the NetSaint mailing
lists.

How do I monitor printers?

Assuming you have HP printers with JetDirect© cards installed, you can use the HP printer plugin to
monitor them. Before you begin monitoring printers you should carefully plan your configuration to
match level of monitoring and response time you need. You need to balance this against the annoyance
of getting alerted every time sometime takes the printer offline to manually feed a transparency, etc. A
lot of admins probably don't care if the printer is jammed or is out of paper, but some tech support
people in large corporations might find this to be a useful feature. Anyway, if you decide to do this you
will need to do the following things:

Enable the TCP/IP protocol stack on the JetDirect© card and assign it an IP address. External
JetDirect© devices with multiple parallel ports will need this to be done on each port that has a
printer connected that you want to monitor.

●

Create a host definition entry for the printer in your config file. Set the notify_recovery,
notify_down, and notify_unreachable options to 0 if you don't want NetSaint to send you alert
when the printer gets turned off on and on.

●

Create a host group for the printer(s) you defined. Call it printers or something similiar.●

Create a contact group containing all contacts that should be notified about printer problems. This●

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (9 of 11) [6/28/2000 8:01:10 AM]

http://elton.dev.knowledge.com/snmpfaq.html
http://www.ee.ethz.ch/~slist/mrtg
http://snmpboy.rte.microsoft.com/
http://www.netsaint.org/mailinglist.html
http://www.netsaint.org/mailinglist.html

group should be the notification group you specified in the printers host group you just defined.
Create a service to be monitored for the printer. Set the notify_critical option to 0 if you don't
want to get notified when someone turns the printer off. The check_hpjd plugin returns a warning
status whenever a problem is detected with a printer, so make sure the notify_warning option is
set to 1 (assuming you want to the contact be notified). Also, fill in the contactgroups option with
the name of the contact group you created for printers.

●

Can NetSaint send SNMP traps to management hosts?

Yes, but not directly. NetSaint relies on plugins to handle the gathering of service and host information
and event handler scripts to handle events that occur with services and hosts. If you want to have
NetSaint send an SNMP trap to a management host in the event that a particular service has a problem,
you will have to write a service event handler script and add it to the event_handler option of the
service definition. If you have the UCD-SNMP package installed on your host, you could have the script
call the snmptrap command to actually send a trap message, depending on what type of service event
occurred. Look at the example event handler script to get a better idea of how to write a script.

Can NetSaint log host and service events to an external database?

Not directly, but this can be done fairly easily. You'll probably want to define global host and service
event handlers to do this. The global event handlers could call a script which inserts the appropriate
event information into a database of your choosing. This would allow you to run queries and generate
more detailed reports than what are available in the CGIs.

Something isn't working properly - How can I track down the problem?

I've worked in tech support for a few years and have spent my share of time on a helpdesk. Most people
are vague when they report a problem and have no desire whatsoever to try and track down the problem
- they just want you to fix it now. I hope you are not that type of person. NetSaint is relatively new and
is probably chock full of bugs, so things will not always work properly. If you suspect that either the
service check or notification routines are not working, here are a few things you can do to try and track
down the problem...

This first thing you should do is verify your configuration data by running NetSaint with the -v option.
Example:

./netsaint -v /usr/local/netsaint/etc/netsaint.cfg

If no errors are found, proceed to the next steps. If NetSaint reports some error, go back and fix your
configuration files.

The next step will take more time, but will give you more information on what is going on inside of
NetSaint. When I first developed NetSaint I added a lot of debugging code to help me track down
problems. I still use that code when I add new features or track down bugs myself. Here is how to use
the debugging code...

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (10 of 11) [6/28/2000 8:01:10 AM]

http://ucd-snmp.ucdavis.edu/

Reconfigure NetSaint and enable one or more debug options as follows, replacing the
"--enable-DEBUGx" with one or more of the values from the table below:

./configure --prefix=/your/netsaint/directory --enable-DEBUGx

Debugging Options

Debug Option Description
--enable-DEBUG0 Used to trace function calls. A lot of messages will be printed out if you

uncomment this option, but it very useful to trace what functions are being called.
Note that not all functions will print an exit message if code within the function
causes an early exit (before reaching the end of the function).

--enable-DEBUG1 Used to print out informational messages about variable settings. Most useful
when trying to debug the configuration data as it is being read or verified.

--enable-DEBUG2 Used to print out warning messages, usually when configuration data is being read
or verified.

--enable-DEBUG3 Used to print out informational messages during host and service checks. Good to
use if you suspect problems are occuring during service checks.

--enable-DEBUG4 Used to print out informational messages during host and service notifications.
Good to use if you suspect problems are occurring during the notification events.

Recompile NetSaint.

Verify your configuration data again - you'll see a lot more information this time if you have enabled the
DEBUG1 option. Try redirecting output to a file so that you can view or print it at a later time.

If you have defined either the DEBUG3 or DEBUG4 options, run NetSaint as a foreground process and
start monitoring your services. Example:

./netsaint /usr/local/netsaint/etc/netsaint.cfg

Kill NetSaint at an approprate point (i.e. after a service check fails) and look through the output. It
should help you track down where the problem is occurring. Some code tweaking may be necessary on
your part in order to fix things. Let me know if you have to make any such alterations so I can include
the fix in future releases.

If you are unable to determine or fix the problem on your own, email me the following items:
The version of NetSaint you are running1.
A description of what is going wrong and what you suspect is the problem2.
The OS you're running NetSaint on3.
Your configuration files (netsaint.cfg and hosts.cfg)4.
Output from the program run (with debugging options on)5.

NetSaint FAQs

http://www.netsaint.org/docs/0_0_6/faqs.html (11 of 11) [6/28/2000 8:01:10 AM]

NetSaint Status Levels

Different status levels (also referred to as "states") for hosts and services are listed below. Some states
are internal to NetSaint and cannot be generated by external plugins. Plugins are only capable of
returning OK, UNKNOWN, WARNING, and CRITICAL states. See the documentation on writing
plugins for more information

Service Status Levels

Status Description

PENDING
This status level indicates that the service has not been checked yet. Pending status
levels occur only after NetSaint is started and will disappear as services are checked.

OK
This status indicates that the service being monitored appears to be both running and
functioning properly.

RECOVERED
This status indicates that the service is functioning properly at the moment, but that
at the last check it was at either a warning, an unknown, or a critical status. In other
words, it just came back up.

WARNING
This status indicates that the service being monitored appears to have some
problems, but is still in a semi-functional state.

UNKNOWN
This status indicates that there was some sort of internal error with the plugin that
prevented it from checking the status of a service. For the purposes of notification,
unknown status levels are considered to be the same as warning status levels.

CRITICAL
This status indicates that either there is a big problem with the service being
checked or that the service is completely unavailable.

UNREACHABLE
This status indicates that the service cannot be checked because the host that it is
associated with is unreachable.

HOST DOWN
In the status CGI this indicates that the host associated with the service was down
the last time the service was checked.

Host Status Levels

Status Description

PENDING

This status level indicates that the status of the host is unknown, because no services
associated with it have been checked yet. Pending status levels occur only when
NetSaint is started, and will disappear as soon as at least one service associated with
the host is checked.

UP This status level indicates that the host appears to be up.
DOWN This status level indicates that the host is down.

UNREACHABLE
This status level indicates that the host is unreachable because a host that it relied on
(i.e. a parent or grandparent host) was down.

NetSaint Status Levels

http://www.netsaint.org/docs/0_0_6/statuslevels.html [6/28/2000 8:01:12 AM]

Service Check Parallelization

Introduction

Beginning with release 0.0.5, the ability to execute service checks in parallel was built into NetSaint.
This documentation will attempt to explain in detail what that means and how it affects services that you
have defined.

Changes In Service Check Logic

In order to facilitate parallelized service checks, the service check logic has been changed from that of
version 0.0.4 and earlier. These earlier versions of NetSaint executed one service check at a time and
processed the results from the check before moving onto the next service.

Beginning with version 0.0.5, the service check logic has been broken up into two distinct parts -
execution of service checks and processing of service check results (also called service "reaper" events).

How The Parallelization Works

Before I can explain how the service check parallelization works, you first have to understand a bit about
how NetSaint schedules events. All internal events in NetSaint (i.e. log file rotations, external command
checks, service checks, etc.) are placed in an event queue. Each item in the event queue has a time at
which it is scheduled to be executed. NetSaint does its best to ensure that all events get executed when
they should, although events may fall behing schedule if NetSaint is busy doing other things.

Service checks are one type of event that get scheduled in NetSaint's event queue. When it comes time
for a service check to be executed, NetSaint will kick off another process to go out and run the service
check (i.e. a plugin of some sort). NetSaint does not, however, wait for the service check to finish!
Instead, NetSaint will immediately go back to servicing other events that reside in the event queue...

So what happens when the service check finishes executing? Well, the process that was started by
NetSaint to run the service check sends a message back to NetSaint containing the results of the service
check. It is then up to NetSaint to check for and process the results of that service check when it gets a
chance.

In order for NetSaint to actually do any monitoring, it much process the results of service checks that
have finished executing. This is done via a service check "reaper" process. Service "reapers" are another
type of event that get scheduled in NetSaint's event queue. The frequency of these "reaper" events is
determined by the service_reaper_frequency option in the main configuration file. When a "reaper" event
is executed, it will check for any messages that contain the result of service checks that have finished
executing. These service check results are then handled by the core service monitoring logic. From there
NetSaint determines whether or not hosts should be checked, notifications should be sent out, etc. When
the service check results have been processed, NetSaint will reschedule the next check of the service and
place it in the event queue for later execution. That completes the service check/monitoring cycle!

For those of you who really want to know, but haven't looked at the code, NetSaint uses message queues
to handle communication between NetSaint and the process that actually runs the service check...

Service Check Parallelization

http://www.netsaint.org/docs/0_0_6/parallelization.html (1 of 3) [6/28/2000 8:01:15 AM]

Potential Gotchas...

You should realize that there are potential drawbacks to having service checks parallelized. Since more
than one service check may be running at the same time, they have may interfere with one another. You'll
have to evaluate what types of service checks you're running and take appropriate steps to guard against
any unfriendly outcomes. This is particularly important if you have more than one service check that
accesses any hardware (like a modem). Also, if two or more service checks connect to daemon on a
remote host to check some information, make sure that daemon can handle multiple simultaneous
connections.

Fortunately, there are some things you can do to protect against problems with having some types of
service checks "collide"...

The easiest thing you can do to prevent service check collisions to to use the
service_interleave_factor variable. Interleaving services will help to reduce the load imposed upon
remote hosts by service checks. Set the variable to use "smart" interleave factor calculation and
then adjust it manually if you find it necessary to do so.

1.

The second thing you can do is to set the max_attempts argument in each service definition to
something greater than one. If the service check does happen to collide with another running
check, NetSaint will retry the service check max_attempts-1 times before notifying anyone of a
problem.

2.

You could try is to implement some kind of "back-off and retry" logic in the actual service check
code, although you may find it difficult or too time-consuming

3.

If all else fails you can effectively prevent service checks from being parallelized by setting the
max_concurrent_checks option to 1. This will allow only one service to be checked at a time, so it
isn't a spectacular solution. If there is enough demand, I will add an option to the service
definitions which will allow you to specify on a per-service basis whether or not a service check
can be parallelized. If there isn't enough demand, I won't...

4.

One other thing to note is the effect that parallelization of service checks can have on system resources
on the machine that runs NetSaint. Running a lot of service checks in parallel can be taxing on the CPU
and memory. The inter_check_delay_method will attempt to minimize the load imposed on your
machine by spreading the checks out evenly over time (if you use the "smart" method), but it isn't a
surefire solution. In order to have some control over how many service checks can be run at any given
time, use the max_concurrent_checks variable. You'll have to tweak this value based on the total number
of services you check, the system resources you have available (CPU speed, memory, etc.), and other
processes which are running on your machine. For more information on how to tweak the
max_concurrent_checks variable for your setup, read the documentation on check scheduling.

What Isn't Parallelized

It is important to remember that only the execution of service checks has been parallelized. There is good
reason for this - other things cannot be parallelized in a very safe or sane manner. In particular, event
handlers, contact notifications, processing of service checks, and host checks are not parallelized. Here's
why...

Event handlers are not parallelized because of what they are designed to do. Much of the power of event

Service Check Parallelization

http://www.netsaint.org/docs/0_0_6/parallelization.html (2 of 3) [6/28/2000 8:01:15 AM]

handlers comes from the ability to do proactive problem resultion. An example of this is restarting the
web server when the HTTP service on the local machine is detected as being down. In order to prevent
more than one event handler from trying to "fix" problems in parallel (without any knowledge of what
each other is doing), I have decided to not parallelize them.

Contact notifications are not parallelized because of potential notification methods you may be using. If,
for example, a contact notification uses a modem to dial out and send a message to your pager, it requires
exclusive access to the modem while the notification is in progress. If two or more such notifications
were being executed in parallel, all but one would fail because the others could not get access to the
modem. There are ways to get around this, like providing some kind of "back-off and retry" method in
the notification script, but I've decided not to rely on users having implemented this type of feature in
their scripts. One quick note - if you have service checks which use a modem, make sure that any
notification scripts that dial out have some method of retrying access to the modem. This is necessary
because a service check may be running at the same time a notification is!

Processing of service check results has not been parallelized. This has been done to prevent situations
where multiple notifications about host problems or recoveries may be sent out if a host goes down,
becomes unreachable, or recovers.

Service Check Parallelization

http://www.netsaint.org/docs/0_0_6/parallelization.html (3 of 3) [6/28/2000 8:01:15 AM]

Service Check Scheduling

Index

Introduction
Configuration options
Initial scheduling
Inter-check delay
Service interleaving
Max concurrent service checks
Time restraints
Normal scheduling
Scheduling during problems
Host checks
Scheduling delays
Scheduling example

Introduction

I've gotten a lot of questions regarding how service checks are scheduled in certain situations, along with how the scheduling differs from
when the checks are actually executed and their results are processed. I'll try to go into a little more detail on how this all works...

Configuration Options

Before we begin, there are several configuration options that affect how service checks are scheduled, executed, and processed. For starters,
each service definition contains three options that determine when and how each specific service check is scheduled and executed. Those
three options include:

check_interval●

retry_interval●

check_period●

There are also four configuration options in the main configuration file that affect service checks. These include:
inter_check_delay_method●

service_interleave_factor●

max_concurrent_checks●

service_reaper_frequency●

We'll go into more detail on how all these options affect service check scheduling as we progress. First off, let's see how services are
initially scheduled when NetSaint first starts or restarts...

Initial Scheduling

When NetSaint (re)starts, it will attempt to schedule the initial check of all services in a manner that will minimize the load imposed on the
local and remote hosts. This is done by spacing the initial service checks out, as well as interleaving them. The spacing of service checks
(also known as the inter-check delay) is used to minimize/equalize the load on the local host running NetSaint and the interleaving is used to
minimize/equalize load imposed on remote hosts. Both the inter-check delay and interleave functions are discussed below.

Even though service checks are initially scheduled to balance the load on both the local and remote hosts, things will eventually give in to
the ensuing chaos and be a bit random. Reasons for this include the fact that services are not all checked at the same interval, some services
take longer to execute than others, host and/or service problems can alter the timing of one or more service checks, etc. At least we try to get
things off to a good start. Hopefully the initial scheduling will keep the load on the local and remote hosts fairly balanced as time goes by...

Note: If you want to view the initial service check scheduling information, start NetSaint using the -s command line option. Doing so will
display basic scheduling information (inter-check delay, interleave factor, first and last service check time, etc) and will create a new status
log that shows the exact time that all services are initially scheduled. Because this option will overwrite the status log, you should not use it
when another copy of NetSaint is running. NetSaint does not start monitoring anything when this argument is used.

Inter-Check Delay

As mentioned before, NetSaint attempts to equalize the load placed on the machine that is running NetSaint by equally spacing out initial

Service Check Scheduling

http://www.netsaint.org/docs/0_0_6/checkscheduling.html (1 of 5) [6/28/2000 8:01:24 AM]

service checks. The spacing between consecutive service checks is called the inter-check delay. By giving a value to the
inter_check_delay_method variable in the main config file, you can modify how this delay is calculated. I will discuss how the "smart"
calculation works, as this is the setting you will want to use for normal operation.

When using the "smart" setting of the inter_check_delay_method variable, NetSaint will calculate an inter-check delay value by using the
following calculation:

inter-check delay = (total normal check interval for all services) / (total number of services)2

Let's take an example. Say you have 1,000 services that each have a normal check interval of 5 minutes (obviously some services are going
to be checked at different intervals, but let's look at an easy case...). The total check interal time for all services is 5,000 (1,000 * 5). That
means that the average check interval for each service is 5 minutes (5,000 / 1,000). Give that information, we realize that (on average) we
need to re-check 1,000 services every 5 minutes. This means that we should use an inter-check delay of 0.005 minutes (0.3 seconds) when
spacing out the initial service checks. By spacing each service check out by 0.3 seconds, we can somewhat guarantee that NetSaint is
scheduling and/or executing 3 new service checks every second. By spacing the checks out evenly over time like this, we can hope that the
load on the local server that is running NetSaint remains somewhat balanced.

The following two images show some output from the status CGI after NetSaint has been started and demonstrate how the inter-check delay
works. For these examples, the inter-check delay was approximately 2.3 seconds (there were a total of 113 services with an average check
interval of about 4.3 minutes). The first image shows the inital scheduling of service checks and the second image shows how NetSaint
executes service checks (the interleave_factor option was set to 1 for this example, so checks are not interleaved). Click on either image for
a larger version.

Image 1. Initial scheduling of service checks (non-interleaved) Image 2. Non-interleaved execution of checks

Service Interleaving

As discussed above, the inter-check delay helps to equalize the load that NetSaint imposes on the local host. What about remote hosts? Is it
necessary to equalize load on remote hosts? Why? Yes, it is important and yes, NetSaint can help out with this. Equalizing load on remote
hosts is especially important with the advent of service check parallelization. If you monitor a large number of services on a remote host and
the checks were not spread out, the remote host might think that it was the victim of a SYN attack if there were a lot of open connections on
the same port. Plus, attempting to equalize the load on hosts is just a nice thing to do...

By giving a value to the service_interleave_factor variable in the main config file, you can modify how the interleave factor is calculated. I
will discuss how the "smart" calculation works, as this will probably be the setting you will want to use for normal operation. You can,
however, use a pre-set interleave factor instead of having NetSaint calculate one for you. Also of note, if you use an interleave factor of 1,
service check interleaving is basically disabled.

When using the "smart" setting of the service_interleave_factor variable, NetSaint will calculate an interleave factor by using the following
calculation:

interleave factor = ceil (total number of services / total number of hosts)

Let's take an example. Say you have a total of 1,000 services and 150 hosts that you monitor. NetSaint would calculate the interleave factor
to be 7. This means that when NetSaint schedules initial service checks it will schedule the first one it finds, skip the next 6, schedule the
next one, and so on... This process will keep repeating until all service checks have been scheduled. Since services are sorted (and thus
scheduled) by the name of the host they are associated with, this will help with minimizing/equalizing the load placed upon remote hosts.

The following two images show some output from the status CGI after NetSaint has been started and demonstrate how the interleaving
works. For these examples, the inter-check delay was approximately 2.3 seconds and the interleave factor was 5 (there were a total of 113
services and 28 hosts). The first image shows the inital scheduling of service checks with interleaving and the second image shows how

Service Check Scheduling

http://www.netsaint.org/docs/0_0_6/checkscheduling.html (2 of 5) [6/28/2000 8:01:24 AM]

NetSaint executes service checks. Notice the differences between these two images and images 1 and 2 above. Click on either image for a
larger version.

Image 3. Initial scheduling of service checks (interleaved) Image 4. Interleaved execution of checks

Maximum Concurrent Service Checks

In order to prevent NetSaint from consuming all of your CPU resources, you can restrict the maximum number of concurrent service checks
that can be running at any given time. This is controlled by using the max_concurrent_checks option in the main config file.

The good thing about this setting is that you can regulate NetSaint's CPU usage. The down side is that service checks may fall behind if this
value is set too low. When it comes time to execute a service check, NetSaint will make sure that no more than x service checks are either
being executed or waiting to have their results processed (where x is the number of checks you specified for the max_concurrent_checks
option). If that limit has been reached, NetSaint will postpone the execution of any pending checks until some of the previous checks have
completed. So how does one determine a reasonable value for the max_concurrent_checks option?

First off, you need to know the following things...
The inter-check delay that NetSaint uses to initially schedule service checks (use the -s command line argument to check this)●

The frequency (in seconds) of service reaper events, as specified by the service_reaper_frequency variable in the main config file.●

A general idea of the average time that service checks actually take to execute (most plugins timeout after 10 seconds, so the average
is probably going to be lower)

●

Next, use the following calculation to determine a reasonable value for the maximum number of concurrent checks that are allowed...

max. concurrent checks = ceil(max(service reaper frequency , average check execution time) / inter-check delay)

The calculated number should provide a reasonable starting point for the max_concurrent_checks variable. You may have to increase this
value a bit if service checks are still falling behind schedule or decrease it if NetSaint is hogging too much CPU time.

Let's say you are monitoring 875 services, each with an average check interval of 2 minutes. That means that your inter-check delay is going
to be 0.137 seconds. If you set the service reaper frequency to be 10 seconds, you can calculate a rough value for the max. number of
concurrent checks as follows (I'll assume that the average execution time for service checks is less than 10 seconds) ...

max. concurrent checks = ceil(10 / 0.137)

In this case, the calculated value is going to be 73. This makes sense because (on average) NetSaint are going to be executing just over 7
new service checks per second and it only processes service check results every 10 seconds. That means at given time there will be a just
over 70 service checks that are either being executed or waiting to have their results processed. In this case, I would probably recommend
bumping the max. concurrent checks value up to 80, since there will be delays when NetSaint processes service check results and does its
other work. Obviously, you're going to have test and tweak things a bit to get everything running smoothly on your system, but hopefully
this provided some general guidelines...

Time Restraints

The check_period option determines the time period during which NetSaint can run checks of the service. Regardless of what status a
particular service is in, if the time that it is actually executed is not a vaid time within the time period that has been specified, the check will
not be executed. Instead, NetSaint will reschedule the service check for the next valid time in the time period. If the check can be run (e.g.
the time is valid within the time period), the service check is executed.

Note: Even though a service check may not be able to be executed at a given time, NetSaint may still schedule it to be run at that time. This
is most likely to happen during the initial scheduling of services, although it may happen in other instances as well. This does not mean that

Service Check Scheduling

http://www.netsaint.org/docs/0_0_6/checkscheduling.html (3 of 5) [6/28/2000 8:01:24 AM]

NetSaint will execute the check! When it comes time to actually execute a service check, NetSaint will verify that the check can be run at
the current time. If it cannot, NetSaint will not execute the service check, but will instead just reschedule it for a later time. Don't let this one
throw you confuse you! The scheduling and execution of service checks are two distinctly different (although related) things.

Normal Scheduling

In an ideal world you wouldn't have network problems. But if that were the case, you wouldn't need a network monitoring tool. Anyway,
when things are running smoothly and a service is in an OK state, we'll call that "normal". Service checks are normally scheduled at the
frequency specified by the check_interval option. That's it. Simple, huh?

Scheduling During Problems

So what happens when there are problems with a service? Well, one of the things that happens is the service check scheduling changes. If
you've configured the max_attempts option of the service definition to be something greater than 1, NetSaint will recheck the service before
deciding that a real problem exists. While the service is being rechecked (up to max_attempts times) it is considered to be in a "soft" state
(as described here) and the service checks are rescheduled at a frequency determined by the retry_interval option.

If NetSaint rechecks the service max_attempts times and it is still in a non-OK state, NetSaint will put the service into a "hard" state, send
out notifications to contacts (if applicable), and start rescheduling future checks of the service at a frequency determined by the
check_interval option.

As always, there are exceptions to the rules. When a service check results in a non-OK state, NetSaint will check the host that the service is
associated with to determine whether or not is up (see the note below for info on how this is done). If the host is not up (i.e. it is either down
or unreachable), NetSaint will immediately put the service into a hard non-OK state and it will reset the current attempt number to 1. Since
the service is in a hard non-OK state, the service check will be rescheduled at the normal frequency specified by the check_interval option
instead of the retry_interval option.

Host Checks

Unlike service checks, host checks are not scheduled on a regular basis. Instead they are run on demand, as NetSaint sees a need. This is a
common question asked by users, so it needs to be clarified.

One instance where NetSaint checks the status of a host is when a service check results in a non-OK status. NetSaint checks the host to
decide whether or not the host is up, down, or unreachable. If the first host check returns a non-OK state, NetSaint will keep pounding out
checks of the host until either (a) the maximum number of host checks (specified by the max_attempts option in the host definition) is
reached or (b) a host check results in an OK state.

Also of note - when NetSaint is check the status of a host, it holds off on doing anything else (executing new service checks, processing
other service check results, etc). This can slow things down a bit and cause pending service checks to be delayed for a while, but it is
necessary to determine the status of the host before NetSaint can take any further action on the service(s) that are having problems.

Scheduling Delays

It should be noted that service check scheduling and execution is done on a best effort basis. Individual service checks are considered to be
low priority events in NetSaint, so they can get delayed if high priority events need to be executed. Examples of high priority events include
log file rotations, external command checks, and service reaper events. Additionally, host checks will slow down the execution and
processing of service checks.

Scheduling Example

The scheduling of service checks, their execution, and the processing of their results can be a bit difficult to understand, so let's look at a
simple example. Look at the diagram below - I'll refer to it as I explain how things are done.

Image 5.

Service Check Scheduling

http://www.netsaint.org/docs/0_0_6/checkscheduling.html (4 of 5) [6/28/2000 8:01:24 AM]

First off, the Xn events are service reaper events that are scheduled at a frequency specified by the service_reaper_frequency option in the
main config file. Service reaper events do the work of gathering and processing service check results. They serve as the core logic for
NetSaint, kicking off host checks, event handlers and notifications as necessary.

For the example here, a service has been scheduled to be executed at time A. However, NetSaint got behind in its event queue, so the check
was not actually executed until time B. The service check finished executing at time C, so the difference between points C and B is the
actual amount of time that the check was running.

The results of the service check are not processed immediately after the check is done executing. Instead, the results are saved for later
processing by a service reaper event. The next service reaper event occurs at time D, so that is approximately the time that the results are
processed (the actual time may be later than D since other service check results may be processed before this one).

At the time that the service reaper event processes the service check results, it will reschedule the next service check and place it into
NetSaint's event queue. We'll assume that the service check resulted in an OK status, so the next check at time E is scheduled after the
originally scheduled check time by a length of time specified by the check_interval option. Note that the service is not rescheduled based off
the time that it was actually executed! There is one exception to this (isn't there always?) - if the time that the service check is actually
executed (point B) occurs after the next service check time (point E), NetSaint will compensate by adjusting the next check time. This is
done to ensure that NetSaint doesn't go nuts trying to keep up with service checks if it comes under heavy load. Besides, what's the point of
scheduling something in the past...?

Service Check Scheduling

http://www.netsaint.org/docs/0_0_6/checkscheduling.html (5 of 5) [6/28/2000 8:01:24 AM]

Notifications

Introduction

I've had a lot of questions as to exactly how notifications work. This will attempt to explain exactly when
and how host and service notifications are sent out, as well as who receives them.

Index

When do notifications occur?
Who gets notified?
What filters must be passed in order for notifications to be sent?
What aren't any notification methods incorporated directly into NetSaint?
Helpful resources

When Do Notifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and service
notifications occur in the following instances...

When a hard state change occurs. More information on state types and hard state changes can be
found here.

●

When a host or service remains in a hard non-OK state and the time specified by the
<notification_interval> option in the host or service definition has passed since the last notification
was sent out (for that specified host or service). If you don't like the idea of recurring notifications,
set the <notification_interval> value to something very high (like 24 hours).

●

Who Gets Notified?

Each service definition has a <contactgroups> option that specifies what contact groups receive
notifications for that particular service. Each contact group can contain one or more individual contacts.
When NetSaint sends out a service notification, it will notify each contact that is a member of any
contact groups specified in the <contactgroups> option of the service definition. NetSaint realizes that
any given contact may be a member of more than one contact group, so it removes duplicate contact
notifications before it does anything.

Each host may belong to one or more host groups. Each host group has a <contact_groups> option that
specifies what contact groups receive notifications for hosts in that particular host group. When NetSaint
sends out a host notification, it will notify contacts that are members of all the contact groups that that
should be notified for any and all host groups that the host is a member of. NetSaint removes any
duplicate contacts from the notification list before it does anything.

What Filters Must Be Passed In Order For Notifications To Be Sent?

Just because there is a need to send out a host or service notification doesn't mean that any contacts are
going to get notified. There are several filters that potential notifications must pass before they are

Notifications

http://www.netsaint.org/docs/0_0_6/notifications.html (1 of 4) [6/28/2000 8:01:28 AM]

deemed worthy enough to be sent out. Even then, specific contacts may not be notified if their
notification filters do not allow for the notification to be sent to them. Let's go into the filters that have to
be passed in more detail...

Click on the image to the left for a graphical representation of the filters that
must be passed before notifications are sent to contacts.

Program Mode Filter:

The first filter that notifications must pass is the program mode test. If NetSaint is in STANDBY
mode, no one gets contacted. If NetSaint is in ACTIVE mode, the notification gets passed to the
next filter...

Service and Host Filters:

The first set of host or service filters that must be passed are the notification options. Each service
definition contains options that determine whether or not notifications can be sent out for warning
states, critical states, and recoveries. Similiarly, each host definition contains options that
determine whether or not notifications can be sent out when the host goes down, becomes
unreachable, or recovers. If the host or service notification does not pass these options, no one gets
notified. If it does pass these options, the notification gets passed to the next filter... Note:
Notifications about host or service recoveries are only sent out if a notification was sent out for the
original problem. It doesn't make sense to get a recovery notification for something you never
knew was a problem...

The second set of host or service filters that must be passed is the time period test. Each host and
service definition has a <notification_period> option that specifies which time period contains
valid notification times for the host or service. If the time that the notification is being made does
not fall within a valid time range in the specified time period, no one gets contacted. If it falls
within a valid time range, the notification gets passed to the next filter... Note: If the time period
filter is not passed, NetSaint will reschedule the next notification for the host or service (if its in a
non-OK state) for the next valid time present in the time period. This helps ensure that contacts
are notified of problems as soon as possible when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already
sent out about a problem with the host or service at some point in the past and (2) the host or
service has remained in the same non-OK state that it was when the last notification went out. If
these two criteria are met, then NetSaint will check and make sure the time that has passed since
the last notification went out either meets or exceeds the value specified by the
<notification_interval> option in the host or service definition. If not enough time has passed since
the last notification, no one gets contacted. If either enough time has passed since the last
notification or the two criteria for this filter were not met, the notification will be sent out!

Notifications

http://www.netsaint.org/docs/0_0_6/notifications.html (2 of 4) [6/28/2000 8:01:28 AM]

Whether or not it actually is sent to individual contacts is up to another set of filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and
NetSaint starts to notify all the people it should. Does this mean that each contact is going to
receive the notification? No! Each contact has their own set of filters that the notification must
pass before they receive it. Note: Contact filters are specific to each contact and do not affect
whether or not other contacts receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact
definition contains options that determine whether or not service notifications can be sent out for
warning states, critical states, and recoveries. Each contact definition also contains options that
determine whether or not host notifications can be sent out when the host goes down, becomes
unreachable, or recovers. If the host or service notification does not pass these options, the contact
will not be notified. If it does pass these options, the notification gets passed to the next filter...
Note: Notifications about host or service recoveries are only sent out if a notification was sent out
for the original problem. It doesn't make sense to get a recovery notification for something you
never knew was a problem...

The last filter that must be passed for each contact is the time period test. Each contact definition
has a <notification_period> option that specifies which time period contains valid notification
times for the contact. If the time that the notification is being made does not fall within a valid
time range in the specified time period, the contact will not be notified. If it falls within a valid
time range, the contact gets notified!

What Aren't Any Notification Methods Incorporated Directly Into NetSaint?

I've gotten several questions about why notification methods (paging, etc.) are not directly incorporated
into the NetSaint code. The answer is simple - it just doesn't make much sense. The "core" of NetSaint is
not designed to be an all-in-one application. If service checks were embedded in NetSaint's core it would
be very difficult for users to add new check methods, modify existing checks, etc. Notifications work in a
similiar manner. There are a thousand different ways to do notifications and there are already a lot of
packages out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike
tire? Its much easier to let an external entity (i.e. a simple script or a full-blown messaging system) do the
messy stuff. Some messaging packages that can handle notifications for pagers and cellphones are listed
below in the resource section.

Helpful Resources

If you're interested in sending an alphanumeric notification to your pager or cellphone via email, you
may be find the following information useful. Here are a few links to various messaging service
providers' websites that contain information on how to send alphanumeric messages to pagers and
phones...

AT&T Wireless●

PageNet●

SprintPCS (SMS phones)●

Notifications

http://www.netsaint.org/docs/0_0_6/notifications.html (3 of 4) [6/28/2000 8:01:28 AM]

http://www.mobile.att.net/mc/email.html
http://www.pagenet.com/sendamessage/emailpage.asp
http://www.messaging.sprintpcs.com/sms_help/send_email.html

If you're looking for an alternative to using email for sending messages to your pager or cellphone, check
out these packages. They could be used in conjuction with NetSaint to send out a notification via a
modem when a problem arises. That way you don't have to rely on email to send notifications out
(remember, email may *not* work if there are network problems). I haven't actually tried these packages
myself, but others have reported success using them...

Danpage (alphanumeric pager software)●

QuickPage (alphanumeric pager software)●

Sendpage (paging software)●

SMS Client (command line utility for sending messages to pagers and mobile phones)●

Lastly, there in an area in the contrib downloads section on the NetSaint homepage for notification
scripts that have been contributed by users. You might find these scripts useful, as they take care of a lot
of the dirty work needed to send out alphanumeric notifications...

Notifications

http://www.netsaint.org/docs/0_0_6/notifications.html (4 of 4) [6/28/2000 8:01:28 AM]

ftp://ftp.cc.gatech.edu/pub/linux/apps/serialcomm/machines/
http://www.qpage.org/
http://www.cpoint.net/projects/sendpage/
http://www.styx.demon.co.uk/
http://www.netsaint.org/

Theory of Operation

Although the general concept of what NetSaint does is relatively easy to understand, its internal workings
can sometimes be difficult to understand. In order to help you better understand how the NetSaint code
works, I've provided some notes here. This isn't very extensive yet, but will be improved in later versions
once everything stabilizes a bit more and I have time to catch up.

Determining Status and Reachability of Network Hosts

Click here to read up on how NetSaint determines the status and reachability of networked hosts in the
process of its monitoring. This document also describes what "parent" hosts are (as defined in host
definitions), and how they affect the way in which host reachability is determined.

Network Outages

Click here to read up on how NetSaint determines what hosts are causing outages on your network. This
mainly pertains to the way in which the network outages CGI works, but it is still worth a quick read.

Notifications

Click here to read up on how service and host notifications work. It describes when and how notifications
occur, as well as the various filters that must be passed before they can actually be sent out to individual
contacts.

Service Check Scheduling

Click here to read up on how service checks are scheduled, and how scheduling differs from when
checks are actually executed and their results processed.

State Types

Click here to read up on what "soft" and "hard" states are, when they occur, and the importance of the
role that they play in the monitoring logic.

Time Periods

Click here to read up on how the use of time periods affects service checks, service notifications, and
host notifications. This document also describes potential problems you may run into when using time
periods. If you are using time periods that don't cover a 24 hour a day, 7 day a week span, you need to
read this!

NetSaint Theory of Operation

http://www.netsaint.org/docs/0_0_6/theory.html [6/28/2000 8:01:30 AM]

Plugin Development Guidelines

Plugin development for NetSaint has been moved over to SourceForge. The NetSaint plugin
development project page can be found here.

The latest version of the plugin developers guide can be found at
http://netsaintplug.sourceforge.net/doc/developer-guidelines.html

Plugin Development Guidelines

http://www.netsaint.org/docs/0_0_6/developer/pluginhowto.html [6/28/2000 8:01:31 AM]

http://www.sourceforge.net/
http://netsaintplug.sourceforge.net/
http://netsaintplug.sourceforge.net/doc/developer-guidelines.html

Starting NetSaint

IMPORTANT: Before you actually start NetSaint, you'll have to make sure that you have configured it
properly (see the docs on the main and host files), verified the config data, and installed some plugins on
your system! Plugins are distributed separately from NetSaint, but are necessary if you actually want to
monitor anything. You can grab the plugins from the downloads page at http://www.netsaint.org

Methods For Starting NetSaint

There are basically four different ways you can start NetSaint:
Manually, as a foreground process (useful for initial testing and debugging)1.
Manually, as a background process2.
Manually, as a daemon3.
Automatically at system boot4.

Let's examine each method briefly...

Running NetSaint Manually as a Foreground Process

If you enabled the debugging options when running the configure script (and recompiled NetSaint), this
would be your first choice for testing and debugging. Running NetSaint as a foreground process at a shell
prompt will allow you to more easily view what's going on in the monitoring and notification processes.
To run NetSaint as a foreground process for testing, invoke NetSaint like this...

./netsaint <main_config_file>

Note that you must specify the path/filename of the main configuration file on the command line. Passing
the name of the host configuration file will result in an error message and program termination.

To stop NetSaint at any time, just press CTRL-C. If you've enabled the debugging options you'll
probably want to redirect the output to a file for easier review later.

Running NetSaint Manually as a Background Process

To run NetSaint as a background process, invoke it with an ampersand as follows...

./netsaint <main_config_file> &

Note that you must specify the path/filename of the main configuration file on the command line. Passing
the name of the host configuration file will result in an error message and program termination.

Running NetSaint Manually as a Daemon

NetSaint 0.0.5 has some experimental code for running NetSaint as a daemon. In order to run Netsaint in
daemon mode you must supply the -d switch on the command line as follows...

./netsaint -d <main_config_file>

Starting NetSaint

http://www.netsaint.org/docs/0_0_6/starting.html (1 of 2) [6/28/2000 8:01:33 AM]

http://www.netsaint.org/

Running NetSaint Automatically at System Boot

When you have tested NetSaint and are reasonably sure that it is not going to crash, you will probably
want to have it start automatically at boot time. To do this (in Linux) you will have to create a startup
script in your /etc/rc.d/init.d/ directory. You will also have to create a link to the script in the runlevel(s)
that you wish to have NetSaint to start in. I'll assume that you know what I'm talking about and are able
to do this.

A sample init script (named init-script) is created in the base directory of the NetSaint distribution when
you run the configure script. You can install the sample script to your /etc/rc.d/init.d directory using the
'make install-init' command, as outlined in the installation instructions. If you choose to run NetSaint in
daemon mode, you can use the 'make install-daemoninit' command to install an appropriate init script.

The sample init scripts are designed to work under Linux, so if you want to use them under FreeBSD,
Solaris, etc. you will have to do a little hacking...

Stopping and Restarting NetSaint

Directions on how to stop and restart NetSaint can be found here.

Starting NetSaint

http://www.netsaint.org/docs/0_0_6/starting.html (2 of 2) [6/28/2000 8:01:33 AM]

Stopping And Restarting NetSaint

Once you have NetSaint up and running, you may need to stop the process or reload the configuration data "on the fly".
This section describes how to do just that.

IMPORTANT: Before you restart NetSaint, make sure that you have verified the configuration data using the -v
command line switch, especially if you have made any changes to your main or host config files. If NetSaint encounters
problem with one of the config files when it restarts, it will log an error and stop.

Stopping And Restarting With The Init Script

If you have installed the sample init script to your /etc/rc.d/init.d directory you can stop and restart NetSaint easily. If you
haven't, skip this section and read how to do it manually below. I'll assume that you named the init script netsaint in the
examples below...

Desired Action Command Description
Stop NetSaint /etc/rc.d/init.d/netsaint stop This kills NetSaint and deletes the current status log

Restart NetSaint /etc/rc.d/init.d/netsaint restart This kills NetSaint, deletes the current status log, and then
starts NetSaint up again

Reload Configuration Data /etc/rc.d/init.d/netsaint reload
Sends a SIGHUP to the NetSaint process, causing it to flush
its current configuration data, reread the configuration files,
and start monitoring again

Stopping, restarting, and reloading NetSaint are fairly simple with an init script and I would highly recommend you use
one if at all possible.

Manually Stopping and Restarting NetSaint

If you aren't using an init script to start NetSaint, you'll have to do things manually. First you'll have to find the process ID
that NetSaint is running under and then you'll have to use the kill command to terminate the application or make it reload
the configuration data by sending it the proper signal. Directions for doing this are outlined below...

Finding The Process ID

First off, you will need to know the process id that NetSaint is running as. To do that, just type the following command at
a shell prompt:

ps axu | grep netsaint

The output should look something like this:

netsaint 6808 0.0 0.7 840 352 p3 S 13:44 0:00 grep netsaint
netsaint 11149 0.2 1.0 868 488 ? S Feb 27 6:33 ./netsaint netsaint.cfg

From the program output, you will notice that NetSaint was started by user netsaint and is running as process id 11149.

Stopping NetSaint

In order to stop NetSaint, use the kill command as follows...

kill 11149

You should replace 11149 with the actual process id that NetSaint is running as on your machine.

Restarting NetSaint

If you have modified the configuration data, you will want to 'restart' NetSaint and have it re-read the new configuration.

Stopping and Restarting NetSaint

http://www.netsaint.org/docs/0_0_6/stoprestart.html (1 of 2) [6/28/2000 8:01:36 AM]

If you have changed the source code and recompiled the main netsaint executable you should not use this method. Instead,
stop NetSaint by killing it (as outlined above) and restart it manually. Restarting NetSaint using the method below does
not actually reload NetSaint - it just causes NetSaint to flush its current configuration, re-read the new configuration, and
start monitoring all over again. To restart NetSaint, you need to send the SIGHUP signal to NetSaint. Assuming that the
process id for NetSaint is 11149 (taken from the example above), use the following command:

kill -HUP 11149

Remember, you will need to replace 11149 with the actual process id that NetSaint is running as on your machine.

Stopping and Restarting NetSaint

http://www.netsaint.org/docs/0_0_6/stoprestart.html (2 of 2) [6/28/2000 8:01:36 AM]

NetSaint Plugins

Note: This document is quite outdated. Plugin development for NetSaint has been moved off to
SourceForge. The NetSaint plugin development project page can be found here.

The following is a basic description of the some of the plugins that are available for use with NetSaint. If
you have further questions, try running the plugins manually using the "manual execution" examples I've
provided.

Other Resources

If you are confused about what the macros are all about, read up on them here. If you have questions
about configuring services to actually make use these plugin examples, read up on the configuration
documentation here. If you read the documentation and still can't figure things out, feel free to email me
and I'll give you a hand.
Documented Plugins

TCP port plugin (check_tcp)
UDP port plugin (check_udp)
SMTP plugin (check_smtp)
POP3 plugin (check_pop)
FTP plugin (check_ftp)
NNTP plugin (check_nntp)
HTTP plugin (check_http)
Time plugin (check_time)
Ping plugin (check_ping)
DNS plugin (check_dns)
SSH plugin (check_ssh)
SNMP plugin (check_snmp)
Disk space plugin (check_disk)
Current users plugin (check_users)
Process plugin (check_procs)
Processor load plugin (check_load)
HP printer plugin (check_hpjd)
MRTG traffic plugin (check_mrtgtraf)
MRTG generic plugin (check_mrtg)
Novell server statistics plugin (check_nwstat)
Over-CR collector plugin (check_overcr)
Process image size plugin (check_vsz)
Swap usage plugin (check_swap)
Oracle database server plugin (check_oracle)

Other Undocumented Plugins

These are some other plugins which are included in the
core plugin distribution, but are not documented
because of a lack of time on my part. Help for each
plugin is usually available by running the plugin with
no command line arguments.

Dummy plugin (check_dummy)●

FPing plugin (check_fping)●

Game server plugin (check_game)●

IMAP plugin (check_imap)●

LDAP plugin (check_ldap)●

MySQL plugin (check_mysql)●

REAL server plugin (check_real)●

Reply plugin (check_reply)●

Breezecom wireless signal strength plugin
(check_breeze.pl)

●

WaveLAN wireless signal strength plugin
(check_wave.pl)

●

FlexLM license manager plugin
(check_flexlm.pl)

●

IRCD server plugin (check_ircd.pl)●

NFS plugin (check_nfs.pl)●

NTP plugin (check_ntp.pl)●

SMB share disk space plugin●

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (1 of 17) [6/28/2000 8:01:50 AM]

http://www.sourceforge.net/
http://netsaintplug.sourceforge.net/
mailto:netsaint@netsaint.org

PostgresQL database plugin (check_pgsql)
Log file pattern detector plugin (check_log)
UPS plugin (check_ups)
SSH plugin executor (check_by_ssh)
NetSaint process plugin (check_netsaint)

(check_disk_smb.pl)

TCP Port Plugin (check_tcp)
Command
Line Format:

check_tcp <host_address> [-p port] [-wt warn_time] [-ct crit_time] [-to to_sec]

Manual
Execution
Example:

check_tcp 192.168.0.2 -p 23

Command
Definition
Example:

command[check_tcp]=/usr/local/netsaint/libexec/check_tcp $HOSTADDRESS$ -p
$ARG1$

This plugin is fairly simple - it just checks to see if it can connect to the specified host on the specified
port number. A critical status is returned if the host cannot be contacted within crit_time seconds (if the
-ct option is supplied) and a warning status is returned if the host cannot be contacted within warn_time
seconds (if the -wt option is supplied). A critical status is returned if the plugin cannot contact the host
within the timeout period specified by the to_sec option (default is 10 seconds).
UDP Port Plugin (check_udp)
Command
Line Format:

check_udp <host_address> [-p port] [-s send] [-e expect] [-wt warn_time] [-ct
crit_time] [-to to_sec]

Manual
Execution
Example:

check_udp 192.168.0.2 -p 20796 -s "Hello, Mr. Server" -e "Hi there, Mr. Client"

Command
Definition
Example:

command[check_udp]=/usr/local/netsaint/libexec/check_udp $HOSTADDRESS$ -p
$ARG1$ -s $ARG2$ -e $ARG3$

This plugin will attempt to connect to the specified UDP port on the given host. The plugin will send the
string specified by the send argument upon making a connection. The plugin will expect to recieve a
response from the server, which should include the substring specified by the expect argument. If the
plugin does not receive a response that contains the substring specified by the expect argument, it will
return a critical status. A critical status is returned if the host cannot be contacted within crit_time
seconds (if the -ct option is supplied) and a warning status is returned if the host cannot be contacted
within warn_time seconds (if the -wt option is supplied). A critical status is returned if the plugin cannot
contact the host within the timeout period specified by the to_sec option (default is 10 seconds).
SMTP Plugin (check_smtp)
Command
Line Format:

check_smtp <host_address> [-p port] [-e expect] [-wt warn_time] [-ct crit_time] [-to
to_sec]

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (2 of 17) [6/28/2000 8:01:50 AM]

Manual
Execution
Example:

check_smtp 192.168.0.2

Command
Definition
Example:

command[check_smtp]=/usr/local/netsaint/libexec/check_smtp $HOSTADDRESS$

This plugin will check to see if it can connect to the SMTP port on the specified host. The plugin will
look for the string specified by the expect argument in the first line of the response from the host (default
is "220"). Specifying an optional port number on the command line will override the default port (25). A
critical status is returned if the host cannot be contacted within crit_time seconds (if the -ct option is
supplied) and a warning status is returned if the host cannot be contacted within warn_time seconds (if
the -wt option is supplied). A critical status is returned if the plugin cannot contact the host within the
timeout period specified by the to_sec option (default is 10 seconds).
POP3 Plugin (check_pop)
Command
Line Format:

check_pop <host_address> [-p port] [-e expect] [-wt warn_time] [-ct crit_time] [-to
to_sec]

Manual
Execution
Example:

check_pop 192.168.0.2

Command
Definition
Example:

command[check_pop]=/usr/local/netsaint/libexec/check_pop $HOSTADDRESS$

This plugin will check to see if it can connect to the POP3 port on the specified host. The plugin will
look for the string specified by the expect argument in the first line of the response from the host (default
is "+OK"). Specifying an optional port number on the command line will override the default port (110).
A critical status is returned if the host cannot be contacted within crit_time seconds (if the -ct option is
supplied) and a warning status is returned if the host cannot be contacted within warn_time seconds (if
the -wt option is supplied). A critical status is returned if the plugin cannot contact the host within the
timeout period specified by the to_sec option (default is 10 seconds).
FTP Plugin (check_ftp)
Command
Line Format:

check_ftp <host_address> [-p port] [-e expect] [-wt warn_time] [-ct crit_time] [-to
to_sec]

Manual
Execution
Example:

check_ftp 192.168.0.2

Command
Definition
Example:

command[check_ftp]=/usr/local/netsaint/libexec/check_ftp $HOSTADDRESS$

This plugin will check to see if it can connect to the FTP port on the specified host. The plugin will look
for the string specified by the expect argument in the first line of the response from the host (default is
"220"). Specifying an optional port number on the command line will override the default port (21). A

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (3 of 17) [6/28/2000 8:01:50 AM]

critical status is returned if the host cannot be contacted within crit_time seconds (if the -ct option is
supplied) and a warning status is returned if the host cannot be contacted within warn_time seconds (if
the -wt option is supplied). A critical status is returned if the plugin cannot contact the host within the
timeout period specified by the to_sec option (default is 10 seconds).
NNTP Plugin (check_nntp)
Command
Line Format:

check_nntp <host_address> [-p port] [-e expect] [-wt warn_time] [-ct crit_time] [-to
to_sec]

Manual
Execution
Example:

check_nntp 192.168.0.2

Command
Definition
Example:

command[check_nntp]=/usr/local/netsaint/libexec/check_nntp $HOSTADDRESS$

This plugin will check to see if it can connect to the NNTP port on the specified host. The plugin will
look for the string specified by the expect argument in the first line of the response from the host (default
is "220"). Specifying an optional port number on the command line will override the default port (119).
A critical status is returned if the host cannot be contacted within crit_time seconds (if the -ct option is
supplied) and a warning status is returned if the host cannot be contacted within warn_time seconds (if
the -wt option is supplied). A critical status is returned if the plugin cannot contact the host within the
timeout period specified by the to_sec option.
HTTP Plugin (check_http)
Command
Line Format:

check_http <host_address> [-e expect] [-u url] [-p port] [-hn host_name] [-wt
warn_time] [-ct crit_time] [-to to_sec] [-nohtml]

Manual
Execution
Example:

check_http 192.168.0.1

Command
Definition
Example:

command[check_http]=/usr/local/netsaint/libexec/check_http $HOSTADDRESS$

This plugin will check to see if it can connect to the HTTP port on the specified host and retrieve the
specified URL. If no URL is specified on the command line, the plugin will fetch the root document. The
plugin looks for a "HTTP/1." message from the host or whatever you specify for the expect argument.
Specifying an optional port number on the command line will override the default port (80). Specifying
the optional host_name argument will cause the plugin to send a "Host: [host_name]" header string to the
HTTP server immediately after the GET request. This is useful when trying to monitor virtual servers
that use host headers. A critical status is returned if the host cannot be contacted within crit_time seconds
(if the -ct option is supplied) and a warning status is returned if the host cannot be contacted within
warn_time seconds (if the -wt option is supplied). A critical status is returned if the plugin cannot contact
the host within the timeout period specified by the to_sec option (default is 10 seconds). By default, this
plugin produces HTML output which provides a link to host/url that you specify on the command line. If
you want to suppress the HTML output, use the nohtml argument.
Time Plugin (check_time)

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (4 of 17) [6/28/2000 8:01:51 AM]

Command
Line Format:

check_time <host_address> [-p port] [-wd warn_diff] [-cd crit_diff] [-wt warn_time]
[-ct crit_time] [-to to_sec]

Manual
Execution
Example:

check_ttime 192.168.0.2 -wd 300 -cd 600

Command
Definition
Example:

command[check_time]=/usr/local/netsaint/libexec/check_tcp $HOSTADDRESS$
-wd 300 -cd 600

This plugin will attempt to check the time on a remote host. Specifying an optional port number on the
command line will override the default (37). The plugin will return a critical status if the time difference
in seconds between the remote and local hosts exceeds the value of the crit_diff argument (if the -cd
option is supplied). It will return a warning status if the time difference exceeds the value of the
warn_diff argument (assuming the -wd option is supplied). A critical status is returned if the host cannot
be contacted within crit_time seconds (if the -ct option is supplied) and a warning status is returned if the
host cannot be contacted within warn_time seconds (if the -wt option is supplied). A critical status is
returned if the plugin cannot contact the host within the timeout period specified by the to_sec option
(default is 10 seconds).
Ping Plugin (check_ping)
Command
Line Format:

check_ping <host_address> <wpl> <cpl> <wrta> <crta> [-p packets] [-nohtml]

Manual
Execution
Example:

check_ping 192.168.0.1 40 100 100.0 1000.0

Command
Definition
Example:

command[check_ping]=/usr/local/netsaint/libexec/check_ping $HOSTADDRESS$
$ARG1$ $ARG2$ $ARG3$ $ARG4$

This plugin will check to see if it can ping the specified host. It will also check the packet loss and round
trip average and compare that against the warning and critical threshold levels specified for each. The
<wpl> and <cpl> arguments are the warning and critical thresholds for percent packet loss, respectively.
Likewise, the <wrta> and <crta> arguments are the warning and critical thresholds for round trip average
(in milliseconds). The optional packets argument allows you to control how many ICMP ECHO packets
are sent to the specified host (default is 5). By default, this plugin produces HTML output which
provides a link to a traceroute CGI, which allows you to run a traceroute to the specified host via the web
interface. If you want to suppress the HTML output, use the nohtml argument.
DNS Plugin (check_dns)
Command
Line Format:

check_dns <host_query> [dns_server]

Manual
Execution
Example:

check_dns www.onepermanentdomain.com 192.168.0.1

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (5 of 17) [6/28/2000 8:01:51 AM]

Command
Definition
Example:

command[check_dns]=/usr/local/netsaint/libexec/check_dns
www.onepermanentdomain.com $HOSTADDRESS$

This plugin will check to see if it can resolve the host or domain name specified by the <host_query>
option. If you don't want to use the default DNS servers specified in /etc/resolv.conf you can specify a
different one by supplying it as the second argument. The most useful purpose of this plugin is to check
the status of one of your DNS servers. If you want to monitor one of your DNS servers, supply a well
known host/domain name as the first argument and the address of your DNS server as the second
argument. The "well known host/domain name" should be something that is widely know and is should
always resolve to a valid IP address - try picking the name of a big search engine or corporate website.

Notes:
This plugin uses the nslookup command to do the actual DNS lookup.●

SSH Plugin (check_ssh)
Command
Line Format:

check_ssh <host_address> [port]

Manual
Execution
Example:

check_ssh 192.168.0.1

Command
Definition
Example:

command[check_ssh]=/usr/local/netsaint/libexec/check_ssh $HOSTADDRESS$
$ARG1$

This plugin will attempt to connect to the SSH server on the port number specified by the port argument
(default is port 22). Upon successfully contacting the SSH server and receiving a valid response, the
plugin will display the protocol and server version information. If the plugin receives and invalid
response it will display the message returned from the server and generate a warning state.

Notes:
This plugin was contributed by Remi Paulmier.●

SNMP Plugin (check_snmp)
Command
Line Format:

check_snmp <host_address> [-c community] [-o object_id] [-e eval_method] [-wv
warn_value] [-cv crit_value] [-l label] [-r rate]

Manual
Execution
Examples:

check_snmp 192.168.0.1 -o ip.ipOutNoRoutes.0 -e GT -wv 5000 -cv 10000 -l "IP
Packets Out W/ No Route" -r "total packets"

Command
Definition
Example:

command[check_ssnmp]=/usr/local/netsaint/libexec/check_snmp $HOSTADDRESS$
-c $ARG1$ -o $ARG2$ -e $ARG3$ -wv $ARG4$ -cv $ARG5$ -l $ARG6$ -r $ARG7$

This plugin will attempt to obtain the value of the objectID (specified by the object_id argument) from
the SNMP source. The value can then be evaluated with a variety of methods (listed in the table below)
against optionally specified warning and critical thresholds.

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (6 of 17) [6/28/2000 8:01:51 AM]

Evalution Methods

Method Description
PR The plugin will check only see see if some sort of value was present in the server response

GT The plugin will return a non-OK state if the data receieved is greater than either the warning or the critical
threshold values

LT The plugin will return a non-OK state if the data receieved is less than either the warning or the critical
threshold values

GTE The plugin will return a non-OK state if the data receieved is greater than or equal to either the warning or the
critical threshold values

LTE The plugin will return a non-OK state if the data receieved is less than or equal to either the warning or the
critical threshold values

EQ The plugin will return a non-OK state if the data receieved is equal to either the warning or the critical
threshold values

NE The plugin will return a non-OK state if the data receieved is not equal to either the warning or the critical
threshold values

Notes:
This plugin used the snmpget command distributed in the UCD-SNMP package. If you don't have
it installed on your system you will need to get it from here before you can use the plugin.

●

For all evalutations methods other than PR, it is expected that the data being evaluated is an
unsigned integer.

●

Disk Space Plugin (check_disk)
Command Line
Format:

check_disk <wusp> <cusp> <file_system>

Manual Execution
Example:

check_disk 85 95 /dev/hda1

Command Definition
Example:

command[check_disk]=/usr/local/netsaint/libexec/check_disk 85 95 $ARG1$

This plugin will check the free disk space on a specific file system. If used disk space percentage exceeds
the <cusp> threshold value, a critical state results. If the used disk space percentage exceeds the <wusp>
threshold value, a warning state results. The <file_system> argument should be in the form of /dev/hda1,
/dev/hdb2, etc.

Notes:
This plugin uses the df command to do the actual disk space check.●

This plugin is UNIX-specific, in that you cannot check the free disk space on NT or Novell
servers, etc.

●

This plugin can only check disk space on the host that is doing the monitoring. You can use rsh,
ssh, or similiar methods to check space on remote hosts, but the netsaint_statd remote perl daemon
will do the job just as well and make your life easier.

●

Current Users Plugin (check_users)

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (7 of 17) [6/28/2000 8:01:52 AM]

http://ucd-snmp.ucdavis.edu/

Command Line
Format:

check_users <wusers> <cusers>

Manual
Execution
Example:

check_users 50 75

Command
Definition
Example:

command[check_users]=/usr/local/netsaint/libexec/check_users $ARG1$ $ARG2$

This plugin will check the number of currently logged in users. If the number of logged in users exceeds
the <cusers> threshold value, a critical state results. If it exceeds the <wusers> threshold value, a
warning state results.

Notes:
This plugin uses the who command to do the actual check of logged in users.●

This plugin is UNIX-specific, in that you cannot check the number of logged in users on NT or
Novell servers, etc.

●

This plugin can only check users on the host that is doing the monitoring. You can use rsh, ssh, or
similiar methods to check users on remote hosts, but the netsaint_statd remote perl daemon will do
the job just as well and make your life easier.

●

Process Plugin (check_procs)
Command
Line Format:

check_procs <wprocs> <cprocs> [process_flags]

Manual
Execution
Example:

check_procs 5 10 ZT

Command
Definition
Example:

command[check_procs]=/usr/local/netsaint/libexec/check_procs $ARG1$ $ARG2$
$ARG3$

This plugin will check the number of processes on the current machine. Optional process flags include R
(Running), S (Sleeping), Z (Zombie), T (Stopped or Traced), and D (Uninterruptible Sleep). If no process
flags are specified, the plugin will count all types of processes. The example above will check for
processed that are in either a zombie state or are stopped/traced.

Notes:
This plugin uses the ps command to do the actual check of processes.●

This plugin is UNIX-specific, in that you cannot check processes on NT or Novell servers, etc.●

This plugin can only check processes on the host that is doing the monitoring. You can use rsh,
ssh, or similiar methods to check processes on remote hosts, but the netsaint_statd remote perl
daemon will do the job just as well and make your life easier.

●

Processor Load Plugin (check_load)

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (8 of 17) [6/28/2000 8:01:52 AM]

Command
Line Format:

check_load <wload1> <cload1> <wload5> <cload5> <wload15> <cload15>

Manual
Execution
Example:

check_load 95 100 90 95 80 90

Command
Definition
Example:

command[check_load]=/usr/local/netsaint/libexec/check_load $ARG1$ $ARG2$
$ARG3$ $ARG4$ $ARG5$ $ARG6$

This plugin will check the load average on the local machine over 1, 5, and 15 minute time periods using
the data found in the /proc/loadavg file. A critical status is returned if the 1, 5, or 15 minute load
averages exceed the <cload1>, <cload5>, or <cload15> thresholds specified. A warning status is
returned if the 1, 5, or 15 minute load averages exceed the <wload1>, <wload5>, or <wload15>
thresholds specified.

Notes:
This plugin was contributed by Felipe Gustavo de Almeida.●

This plugin is UNIX-specific, in that you cannot check processor loads on NT or Novell servers,
etc.

●

This plugin can only check processor load on the host that is doing the monitoring. You can use
rsh, ssh, or similiar methods to check processor load on remote hosts, but the netsaint_statd
remote perl daemon will do the job just as well and make your life easier.

●

HP Printer Plugin (check_hpjd)
Command
Line Format:

check_hpjd <address> [community]

Manual
Execution
Example:

check_hpjd 192.168.0.1

Command
Definition
Example:

command[check_hpdj]=/usr/local/netsaint/libexec/check_hpdj $HOSTADDRESS$
$ARG1$

This plugin will check the status of an HP printer that has a JetDirect© card installed. This plugin will
return a critical status when the printer is turned off, a warning status when it has a paper jam, is offline,
out of paper, low on toner, etc. Specifying an optional [community] argument on the command line will
override the default SNMP community used in the communication with the printer (public).

My guess is that you don't want to get alert emails or pages everytime a printer jams or gets turned off at
the end of the day, right? If so, read the FAQ on monitoring printers.

Notes:
This plugin works only on HP brand printers with JetDirect© cards installed, and it may not work
on all of them.

●

This plugin used the snmpget command distributed in the UCD-SNMP package. If you don't have●

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (9 of 17) [6/28/2000 8:01:52 AM]

mailto:galmeida@sti.com.br

it installed on your system you will need to get it from here before you can use the plugin.
The idea (and some code) for this plugin came from Jim Trocki's printer alert script in his mon
program.

●

The JetDirect© card must have the TCP/IP protocol stack enabled and configured. External
JetDirect© devices must have TCP/IP enabled on each port they want to monitor.

●

JetDirect is copyrighted by Hewlett-Packard. Don't sue me please. :-)●

MRTG Traffic Plugin (check_mrtgtraf)
Command
Line
Format:

check_mrtgtraf <log_file> <expire_minutes> <AVG|MAX> <iwl> <icl> <owl> <ocl>

Manual
Execution
Example:

check_mrtgtraf /home/httpd/html/mrtg/router1.log 10 AVG 1000000 1500000
1000000 1500000

Command
Definition
Example:

command[check_mrtgtraf]=/usr/local/netsaint/libexec/check_mrtgtraf $ARG1$ 10
AVG $ARG2$ $ARG3$ $ARG4$ $ARG5$

This plugin will check a traffic log file generated by MRTG and generate alerts if the incoming or
outgoing rates (in Bytes/sec) exceed the specified thresholds. If the newest entry in the log file is more
than <expire_minutes> old, the plugin will return a warning level. Specifying AVG or MAX as the third
argument will control whether the plugin looks at average or maximum values in the log file (default is
average). If the incoming or outgoing rates exceed the <iwl> or <owl> warning thresholds, respectively,
a warning status is returned. If the rates exceed the <icl> or <ocl> critical thresholds, a critical status is
returned. Command line thresholds are in Bytes/sec.

Notes:
This plugin requires MRTG to do the actual traffic rate monitoring. You can download MRTG
from http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html.

●

The traffic rates reported by the plugin are slightly different from those reported by MRTG - I'll
look into this.

●

MRTG Generic Plugin (check_mrtg)
Command
Line Format:

check_mrtg <log_file> <expire_minutes> <AVG|MAX> <column> <vwl> <vcl>
<label> [rate]

Manual
Execution
Example:

check_mrtg /home/httpd/html/mrtg/router1.log 10 AVG 1 1000000 1500000 In
Bytes/Sec

Command
Definition
Example:

command[check_mrtg]=/usr/local/netsaint/libexec/check_mrtg $ARG1$ 10 AVG
$ARG2$ $ARG3$ $ARG4$ $ARG5$ $ARG6$

This plugin will check a log file generated by MRTG and generate alerts if the value of the specified
variable exceeds the specified thresholds. If the newest entry in the log file is more than
<expire_minutes> old, the plugin will return a warning level. Specifying AVG or MAX as the third

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (10 of 17) [6/28/2000 8:01:53 AM]

http://ucd-snmp.ucdavis.edu/
http://www.kernel.org/software/mon
http://www.hp.com/
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html

command line argument will control whether the plugins looks at the average or maximum value of the
variable in the log file (default is average). This plugin will only check one of the two possible variables
recorded by MRTG. If you want to monitor the first variable, specify 1 as the <column> argument. If
you want to monitor the second variable, specify 2 as the argument. If the value of the specified variable
exceeds the <vcl> threshold, a critical status is returned. If it exceeds the <vwl> threshold, a warning
status is returned. The <label> argument is used in the output to identify what type of data is being
monitored. Examples include Connections, "User Connections", "Processor Utilization", "Traffic
In", etc. The optional [rate] argument is used to give the variable value som meaning. Examples include
%, Packets/Sec, Bytes/Sec, "Errors Per Second", etc.

Notes:
This plugin requires MRTG to do the actual monitoring. You can download MRTG from
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html.

●

Process Image Size Plugin (check_vsz)
Command
Line Format:

check_vsz <wsize> <csize> [command_name]

Manual
Execution
Example:

check_vsz 100000 150000 betaprogram

Command
Definition
Example:

command[check_vsz]=/usr/local/netsaint/libexec/check_vsz $ARG1$ $ARG2$
$ARG3$

This plugin will check for processes whose total image size (in bytes) exceeds the warning or critical
thresholds given on the command line (<wsize> and <csize>, respectively). With no [command_name]
specified, every command that shows up in the ps command is evaluated. Otherwise, only jobs with
names matching the [command_name] argument are examined. This program is particularly useful if you
have to run a piece of commercial software that has a potential memory leak and you want to watch its
memory usage carefully.

Notes:
This plugin was contributed by Karl DeBisschop.●

Used in conjuction with an approriate service event handler, you could use this plugin to
automatically kill and restart a program which is consuming memory.

●

Swap Usage Plugin (check_swap)
Command Line
Format:

check_swap <wswap> <cswap>

Manual
Execution
Example:

check_swap 100000 120000

Command
Definition
Example:

command[check_swap]=/usr/local/netsaint/libexec/check_swap $ARG1$ $ARG2$

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (11 of 17) [6/28/2000 8:01:53 AM]

http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
mailto:kdebisschop@spaceheater.infoplease.com

This plugin will check all the swap partitions on the local machine and return a warning or critical status
if the percent of swap usage is above the <wswap> or <cswap> thresholds.

Notes:
This plugin was contributed by Karl DeBisschop.●

Novell Server Statistics Plugin (check_nwstat)
Command
Line Format:

check_nwstat <host_address> [-p port] [-v variable] [-wv warn_value] [-cv
crit_value] [-to to_sec]

Manual
Execution
Example:

check_nwstat 192.168.1.5 -v LOAD5 -wv 80 -cv 95

Command
Definition
Example:

command[check_nwstat]=/usr/local/netsaint/libexec/check_nwstat
$HOSTADDRESS$ -v $ARG1$ -wv $ARG2$ -cv $ARG3$

This plugin allows you to monitor disk usage, connections, cache buffers, and LRU sitting time on your
Novell servers. The plugin obtains server information by talking to the MRTGEXT NLM (distributed
with James Drews' MRTG extension - see below) on the Novell server. The default port used to
communicate with the server NLM is 9999. If the value for a given variable is higher than the specified
critical threshold (or possibly lower - see note below), a critical status is returned. If the value is highter
than the specified warning threshold (or possibly lower - see note below), a warning status is returned.
Only one variable can be checked at a time. Valid variables are listed below. A critical status is returned
if the plugin cannot contact the host within the timeout period specified by the to_sec option (default is
10 seconds).

Variable Description
LOAD1 1 minute load average

LOAD5 5 minute load average

LOAD15 15 minute load average

CONNS Number of licensed connections

LTCH Percentage of long term cache hits

CBUFF Number of total cache buffers

CDBUFF Number of dirty cache buffers

LRUM LRU sitting time in minutes

VPF<volume> Percent free space on volume <volume>

VKF<volume> KB of free space on volume <volume>

Notes:
Both the critical and warning thresholds are optional. If neither is specified, the plugin returns an
ok status (except in the case of a communication or configuration error).

●

The critical thresholds should be lower than the warning thresholds for volume free space, cache
buffers, and LRU sitting time because a lower value for these variables is worse than a higher
number!

●

This plugin requires that MRTGEXT.NLM (distributed in James Drews' MRTG Extensions for●

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (12 of 17) [6/28/2000 8:01:53 AM]

mailto:kdebisschop@spaceheater.infoplease.com
http://www.cae.wisc.edu/~drews/mrtg/

Netware package) be running on the Novell servers you wish to monitor. You don't have to use
MRTG to use this plugin - just run MRTGEXT.NLM on your servers.

Over-CR Collector Plugin (check_overcr)
Command
Line Format:

check_overcr <host_address> [-p port] [-v variable] [-wv warn_value] [-cv
crit_value] [-to to_sec]

Manual
Execution
Example:

check_overcr 192.168.1.5 -v LOAD5 -wv 80 -cv 95

Command
Definition
Example:

command[check_overcr]=/usr/local/netsaint/libexec/check_overcr
$HOSTADDRESS$ -v $ARG1$ -wv $ARG2$ -cv $ARG3$

This plugin allows you to monitor active network connections, uptime, running processes, disk usage,
and processor load on remote servers. The plugin obtains server information by talking to Over-CR
collector that runs on the remote server (see note below). The default port used to communicate with the
Over-CR collector is 2000. If the value for a given variable is higher than the specified critical threshold
(or possibly lower - see note below), a critical status is returned. If the value is highter than the specified
warning threshold (or possibly lower - see note below), a warning status is returned. Only one variable
can be checked at a time. Valid variables are listed below. A critical status is returned if the plugin
cannot contact the host within the timeout period specified by the to_sec option (default is 10 seconds).

Variable Description
LOAD1 1 minute load average

LOAD5 5 minute load average

LOAD15 15 minute load average

DPU<filesys> Percent used disk space on file system filesys

PROC<process> Number of running processes with a name of process
NET<port> Number of active TCP/IP connection on port port
UPTIME System uptime in seconds

Notes:
Both the critical and warning thresholds are optional. If neither is specified, the plugin returns an
ok status (except in the case of a communication or configuration error).

●

The critical thresholds should be lower than the warning thresholds for UPTIME, since a lower
uptime value is worse than a higher one!

●

This plugin requires that Eric Molitor's Over-CR collector be running on the servers you wish to
monitor.

●

Oracle Database Server Plugin (check_oracle)
Command
Line Format:

check_oracle <host_address>

Manual
Execution
Example:

check_oracle 192.168.0.2

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (13 of 17) [6/28/2000 8:01:54 AM]

http://www.cae.wisc.edu/~drews/mrtg/
http://www.molitor.org/overcr/

Command
Definition
Example:

command[check_oracle]=/usr/local/netsaint/libexec/check_oracle
$HOSTADDRESS$

This plugin will attempt to see if an Oracle database server on the specified host can be contacted. The
plugin returns a critical status if the database server cannot be reached.

Notes:
This plugin was contributed by Jorge Sanchez●

This plugin requires the tnsping program distributed with Oracle SQL*Net software.●

This plugin is a shell script and does not need to be compiled●

PostgresQL Database Plugin (check_pgsql)
Command
Line Format:

check_pgsql [twarn] [tcrit] [host] [port] [db] [user] [password]

Manual
Execution
Example:

check_pgsql 120 3600 192.168.0.1 5432 mydatabase

Command
Definition
Example:

command[check_pgsql]=/usr/local/netsaint/libexec/check_pgsql 120 3600
$HOSTADDRESS$ $ARG1$ $ARG2$ $ARG3$ $ARG4$

This plugin will attempt to connect to the specified postgresQL database on the host. Connection refusals
and timeouts result in a critical status. If the connection time exceeds the tcrit value in seconds, a critical
status results. If the connection time exceeds the twarn value in seconds, a warning status results. All
other errors result in an unknown status.

All arguments to this plugin are optional. The defaults are equivalent to "check_pgsql 120 3600
localhost 5432" and assume that the user that runs the plugin can connect to the database without a
password.

Security Tip: If you use the [username] and [password] arguments in a command or service definition,
you should take steps to ensure that this information does not end up getting displayed in the HTML
pages that NetSaint generates!

Notes:
This plugin was contributed by Karl DeBisschop●

This plugin requires that the PostgresQL libraries be installed on your machine in order to be
compiled

●

This plugin requires that the backend for remote machines use TCP/IP (start postmaster with the -i
option)

●

Log File Pattern Detector Plugin (check_log)
Command
Line Format:

check_log <log_file> <old_log_file> <pattern>

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (14 of 17) [6/28/2000 8:01:54 AM]

mailto:Jsanchez@lanchile.cl
mailto:tkdebisschop@spaceheater.infoplease.com

Manual
Execution
Example:

check_oracle /var/log/messages /usr/local/netsaint/var/check_log.old.loginfailure
'LOGIN FAILURE'

Command
Definition
Example:

command[check_log]=/usr/local/netsaint/libexec/check_log $ARG1$ $ARG2$

This plugin will scan a log file (specified by the log_file option) for a specific pattern (specified by the
pattern option). Successive calls to the plugin script will only report new pattern matches in the log file,
since an copy of the log file from the previous run is saved to old_log_file. The plugin returns a critical
status if the log file cannot be located. The first time the plugin is executed it will initialize the data it
needs and return with an ok status. Successive executions will return an OK status if no pattern matches
are detected in the changes to the original log file. If one or more pattern matches are found, the plugin
will return a CRITICAL status and print a string in the following format: (x) last_entry, where x is the
total number of matches found and last_entry is the last matching entry from the log file.

Notes:
This plugin is a shell script and does not need to be compiled●

This plugin is very "expensive" as far as disk space is concerned, because it keeps an old copy of
the original log file for each pattern that you want to check. I am aware of this and know this
should be done better - I wrote this simply as an example. A long term solution is a tie-in with a
log watcher like SWATCH.

●

UPS Plugin (check_ups)
Command
Line Format:

check_ups <host_address> [-p port] [-u ups] [-v variable] [-wv warn_value] [-cv
crit_value] [-to to_sec]

Manual
Execution
Example:

check_ups 192.168.0.3 -u mybigups -v BATTPCT -wv 80 -cv 40

Command
Definition
Example:

command[check_ups]=/usr/local/netsaint/libexec/check_ups $HOSTADDRESS$ -u
$ARG1$ -v $ARG2$ -wv $ARG3$ -cv $ARG4$

This plugin attempts to determine the status of an UPS (Uninterruptible Power Supply) on a remote host
(or the local host) that is being monitored with Russel Kroll's "Smart UPS Tools" package. If the UPS is
online or calibrating, the plugin will return an OK state. If the battery is on it will return a WARNING
state. If the UPS is off or has a low battery the plugin will return a CRITICAL state. You may also
specify a variable to check (such as temperature, utility voltage, battery load, etc.) as well as warning and
critical thresholds for the value of that variable. If the remote host has multiple UPS that are being
monitored, you will have to use the ups option to specify which UPS to check. A critical status is
returned if the host cannot be contacted within crit_time seconds (if the -ct option is supplied) and a
warning status is returned if the host cannot be contacted within warn_time seconds (if the -wt option is
supplied). A critical status is returned if the plugin cannot contact the host within the timeout period
specified by the to_sec option (default is 10 seconds).

Variable Description

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (15 of 17) [6/28/2000 8:01:54 AM]

http://www.stanford.edu/~atkins/swatch/

UTILITY
The difference (absolute value) between 120.0 VAC and the voltage that is being supplied to the UPS via the
utility line

BATTPCT Percent of battery charge remaining

LOADPCT Percent load being put on the UPS by the electronic devices attached to it

TEMP The temperature (in degrees Farenheit) of the UPS

Notes:
If the UPS being monitored does not support one or more of the variables that the plugin monitors,
those variables will not be checked.

●

The critical thresholds should be lower than the warning thresholds for BATTPCT, since a lower
battery reserve is worse than a higher one!

●

This plugin requires that the UPSD daemon distributed with Russel Kroll's "Smart UPS Tools" be
installed on the remote host. If you don't have the package installed on your system, you can
download it from http://www.exploits.org/~rkroll/smartupstools.

●

SSH Plugin Executor (check_by_ssh)
Command
Line Format:

check_by_ssh <user> <host> <command>

Manual
Execution
Example:

check_by_ssh

Command
Definition
Example:

command[check_by_ssh]=/usr/local/netsaint/libexec/check_by_ssh $ARG1$ $ARG2$
$ARG3$

This is not so much a plugin as it is a plugin wrapper. It basically allows you to execute plugins on a
remote host by using SSH. The SSH username on the remote host is specified with the user argument,
the address of the remote host is specified by the host argument, and the command that should be
executed on the remote host is specified by the command argument.

Notes:
This plugin was contributed by Karl DeBisschop●

You must have SSH installed and configured properly in order to use this plugin●

The plugins that you want to execute on the remote host must be installed on the remote host!●

NetSaint Process Plugin (check_netsaint)
Command
Line
Format:

check_netsaint <status_log> <expire_minutes> <process_string>

Manual
Execution
Example:

check_netsaint /usr/local/netsaint/var/status.log 5 "/usr/local/netsaint/bin/netsaint -d
/usr/local/netsaint/etc/netsaint.cfg"

Command
Definition
Example:

command[check_netsaint]=/usr/local/netsaint/libexec/check_netsaint $ARG1$
$ARG2$ $ARG3$

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (16 of 17) [6/28/2000 8:01:55 AM]

http://www.exploits.org/~rkroll/smartupstools
mailto:kdebisschop@spaceheater.infoplease.com

This plugin is used to check the status of the NetSaint process on the local host. The plugin will check
the contents of the status log (specified by the status_log argument) and make sure that the most recent
entry is no older than the number of minutes specified by the expire_minutes argument. If the status log
is older than this value, a warning state results. The plugin will also use the ps command to search for a
running process that matches the process_string argument. If the plugin cannot locate a match of the
process string, it assumes that NetSaint is not running and returns a critical state.

Notes:
This plugin can be used by the CGIs to check the status of the NetSaint process. This is done by
using the process_check_command option in the CGI configuration file.

●

This plugin can be used when implementing redundant monitoring hosts, although it must be
executed on the remote hosts as explained in this FAQ.

●

NetSaint Plugins

http://www.netsaint.org/docs/0_0_6/oldplugins.html (17 of 17) [6/28/2000 8:01:55 AM]

NetSaint Addons

The following is a description of various "addons" that are available for NetSaint. These and other
addons can be obtained from the downloads page on the NetSaint website (www.netsaint.org).

Index

cl_status - Console interface for viewing status of monitored services
neat - Web-based administration interface for NetSaint
netsaint_mrtg - MRTG scripts for graphing host and service status information
netsaint_statd - Perl daemon and plugins for monitoring remote host information
nrpe - Daemon and plugin for executing plugins on remote hosts
nrpep - Service and plugin for executing plugins on remote hosts
nsa - Web-based administration interface for NetSaint
nsca - Daemon and client program for sending passive check results across the network
pscwatch - Watchdog daemon that ensures passive service checks are being submitted

cl_status - Console interface for viewing status of monitored services
Author: Adam Bowen
Description: This program is designed to run in a console and display the current status of monitored

hosts and services. It uses ncurses to display as many status lines as possible based on the
screen size settings. It will also make the console beep and flash if there are any problems.
You can specify the rate at which the status information is refreshed from the NetSaint
status log.

neat - Web-based administration interface for NetSaint
Author: Jason Blakey
Description: NetSaint Easy Administration Tool (NEAT) is a web administration interface for NetSaint

that is written in Perl. It allows you to add/edit/delete definitions in your host configuration
file and restart NetSaint upon completion of the configuration changes. Unlike nsa, it does
not require a database to store your configuration data.

netsaint_mrtg - MRTG scripts for graphing NetSaint host and service status information
Author: Richard Mayhew
Overview: Allows you to produce MRTG graphs of NetSaint host and service status information
Files:

mrtghost_total.pl
- Perl script that obtains the total number of hosts that are up and
down

mrtgsvc_total.pl
- Perl script that obtains the total number of services that are up and
down

mrtgsvchost_total.pl
- Perl script that obtains the total number of services that are up and
down on a particular server

mrtgsvctyp_total.pl
- Perl script that obtains the total number of services (of a particular
type) that are up and down

NetSaint Addons

http://www.netsaint.org/docs/0_0_6/addons.html (1 of 4) [6/28/2000 8:02:00 AM]

http://www.netsaint.org/
mailto:adam.bowen@bankofamerica.com
mailto:jblakey@elvis.playground.net
mailto:netsaint@splash.co.za
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html

Description: This package includes two scripts which allow MRTG to generate graphs of host and
service status totals, as reported by NetSaint. The scripts scan the NetSaint status log to
determine the total number of services or hosts that have problems or are okay. Examples
of how to incorporate the scripts with MRTG are provided in the README.mrtg file.

Notes: You must be running MRTG to actually make use of this package●

netsaint_statd - Perl daemon and plugins for monitoring remote host information
Author: Nick Reinking
Overview: Allows you to monitor disk usage, load average, processes, and users on remote hosts.
Files: netsaint_statd - Perl daemon that runs on remote hosts

check_disk.pl
- Perl plugin that is executed by NetSaint to check remote host disk
information [single disks]

check_all_disks.pl
- Perl plugin that is executed by Netsaint to check remote disk
information. [all but ignored disks]

check_users.pl
- Perl plugin that is executed by NetSaint to check remote host user
information

check_procs.pl
- Perl plugin that is executed by NetSaint to check remote host process
information

check_load.pl
- Perl plugin that is executed by NetSaint to check remote host load
information

Changelog - Changes recently made to netsaint_statd
README - Command options and arguments (for hosts.cfg)

Description: netsaint_statd is a daemon which allows a NetSaint host to get information such as process
count, users, disk usage, and load information using the corresponding plugin scripts. The
daemon does not process the system information in anyway. It merely collects the
information and hands it back to the calling script to do with as it pleases.

The daemon script is designed in such a way as to allow for easy porting to other OSes (as
long as you have Perl installed). Adding other checks should also be easy by adding the
appropriate sections in the command list for netsaint_statd. Currently supported OSs are
HP-UX, Linux, Solaris/SunOS, IRIX, OSF1, FreeBSD and NEXTSTEP. The only
requirements for getting your OS supported are the standard UNIX utilities. Host
restrictions are just a small list of IPs to listen to (or you can have it listen to everybody).
netsaint_statd is designed to allow easy addition of extra remote system checks.

Notes: You'll have to modify the first line of code in each file to match the location of your
perl binary.

●

nrpe - Daemon and plugin for executing plugins on remote hosts
Author: Me
Overview: Allows you to execute plugins on remote hosts in a relatively easy and transparent manner.
Files: check_nrpe - Plugin used to send execution requests to the nrpe agent on the remote host

nrpe - Agent that runs on the remote host and processes plugin execution requests
nrpe.cfg - Configuration file for the remote host agent

NetSaint Addons

http://www.netsaint.org/docs/0_0_6/addons.html (2 of 4) [6/28/2000 8:02:00 AM]

http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
mailto:nick.reinking@supervalu.com
mailto:netsaint@netsaint.org

Description: This addon is designed to provide a way for executing plugins on a remote host. The
check_nrpe plugin runs on the NetSaint host and is used to send plugin execution requests
to the nrpe agent on the remote host. The nrpe agent will then run an appropriate plugins
on the remote host and return the plugin output and return code to the check_nrpe plugin
on the NetSaint host. The check_nrpe plugin then passes the remote plugin's output and
return code back to NetSaint as if it were its own. This allows for a rather transparent
method of executing plugins on remote hosts. The nrpe agent can either be run as a
standalone daemon or as a service under inetd.

Notes: When running in daemon mode, the nrpe agent authenticates plugin execution
requests by doing a rudimentary comparison of the IP address of the calling host
against a list of allowed IP addresses in the configuration file.

●

When running under inetd, TCP wrappers can be employed to restrict access to the
nrpe agent

●

nrpep - Service and plugin for executing plugins on remote hosts
Author: Adam Jacob
Overview: Allows you to execute plugins on remote hosts in a relatively easy and transparent manner.
Description: NetSaint Remote Plugin Executor/Perl (NRPEP) was designed as a replacemnt for the

netsaint_statd and nrpe addons. Although this addon is similiar in function to nrpe, it is
written in Perl and implements TripleDES encryption for the data in transit. It is also
designed to run under inetd and make use of the TCP Wrappers package for access control.

Notes: Requires two Perl modules: Crypt-TripleDES-0.24 and Digest-MD5-2.09●

nsa - Web-based administration package for NetSaint
Author: Daniel Burke
Description: Daniel Burke has created this excellent addon - named "NetSaint Administrator" - to fill

the need for an more user-friendly means of configuring NetSaint. This package allows
you to edit your configuration data (hosts, services, contacts, timeperiods, etc.) via a web
interface. Configuration data is stored in a MySQL database and written to a text file in the
proper configuration file format when you're ready. The CGIs can also run NetSaint with
the -v option to verify the contents of your configuration file. This is an excellent
application for anyone who either hates the native config file format or just wants an easier
interface for managing the configuration data.

Notes: You must have MySQL v2.22.25 or higher installed, Perl5 with DBI and MySQL
DBD installed, and a general knowledge of how to create/delete databases and
tables in MySQL in order to use this package.

●

nsca - Daemon and client program for sending passive check results across the network
Author: Me
Overview: Allows you to submit passive service checks results to another server on the network that

is running NetSaint.

NetSaint Addons

http://www.netsaint.org/docs/0_0_6/addons.html (3 of 4) [6/28/2000 8:02:00 AM]

mailto:adam@cybertrails.com
mailto:dwb1@home.com
mailto:netsaint@netsaint.org

Files:
nsca

- Daemon that runs on the central NetSaint server and processes passive
service check results submitted by clients

nsca.cfg - Configuration file for the nsca daemon

send_nsca
- Client program that is executed from remote hosts and sends passive
service check information to the nsca daemon on the central NetSaint
server

send_nsca.cfg - Configuration file for the send_nsca client
Description: This addon allows you to send passive service check results from remote hosts to a central

monitoring host that runs NetSaint. The client can be used as a standalone program or can
be integrated with remote NetSaint servers that run an ocsp command to setup a distributed
monitoring environment.

Notes: As of the first beta version, the client and daemon use an elementary XOR operation
to "encrypt" the data being passed across the network. This is obviously not very
secure! This was implemented only as of proof-of-concept solution for allowing the
nsca daemon to "trust" the data the client sends. A strong private-key encryption
method will hopefully be incorporated into the client and daemon soon, so long as I
can implement the encryption function on multiple platforms (NT, Novell, etc).

●

pscwatch - Watchdog daemon that ensures passive service checks are being submitted
Author: Me
Overview: Ensures that passive service checks are being submitted at regular intervals.
Description: This addon's sole purpose in life is to ensure that passive service checks are being

submitted to NetSaint on a regular basis. This addon is designed to be used on a central
monitoring server when setting up a distributed monitoring environment.

NetSaint Addons

http://www.netsaint.org/docs/0_0_6/addons.html (4 of 4) [6/28/2000 8:02:00 AM]

mailto:netsaint@netsaint.org

Determining Status and Reachability of Network Hosts

Monitoring Services on Down or Unreachable Hosts

The main purpose of NetSaint is to monitor services that run on or are provided by physical hosts or devices on your network. It should be obvious that if
a host or device on your network goes down, all services that it offers will also go down with it. Similarly, if a host becomes unreachable, NetSaint will
not be able to monitor the services associated with that host.

NetSaint recognizes this fact and attempts to check for such a scenario when there are problems with a service. Whenever a service check results in a
non-OK status level, NetSaint will attempt to check and see if the host that the service is running on is "alive". Typically this is done by pinging the host
and seeing if any response is received. If the host check commmand returns a non-OK state, NetSaint assumes that there is a problem with the host. In this
situation NetSaint will "silence" all potential alerts for services running on the host and just notify the appropriate contacts that the host is down or
unreachable. If the host check command returns an OK state, NetSaint will recognize that the host is alive and will send out an alert for the service that is
misbehaving.

Local Hosts

"Local" hosts are hosts that reside on the same network segment as the host running NetSaint - no routers or firewalls lay between them. Figure 1 shows
an example network layout. Host A is running NetSaint and monitoring all other hosts and routers depicted in the diagram. Hosts B, C, D, E and F are all
considered to be "local" hosts in relation to host A.

The <parent_host> option in the host defintion for a "local" host should be left blank, as local hosts have no depencies or "parents" - that's why they're
local.

Monitoring Local Hosts

Checking hosts that are on your local network is fairly simple. Short of someone accidentally (or intentially) unplugging the network cable from one of
your hosts, there isn't too much that can go wrong as far as checking network connectivity is concerned. There are no routers or external networks between
the host doing the monitoring and the other hosts on the local network.

If NetSaint needs to check to see if a local host is "alive" it will simply run the host check command for that host. If the command returns an OK state,
NetSaint assumes the host is up. If the command returns any other status level, NetSaint will assume the host is down.

Figure 1.

Determining Status and Reachability of Network Hosts

http://www.netsaint.org/docs/0_0_6/networkreachability.html (1 of 4) [6/28/2000 8:02:04 AM]

Remote Hosts

"Remote" hosts are hosts that reside on a different network segment than the host running NetSaint. In the figure above, hosts G, H, I, J, K, L and M are
all considered to be "remote" hosts in relation to host A.

Notice that some hosts are "farther away" than others. Hosts H, I and J are one hop further away from host A than host G (the router) is. From this
observation we can construct a host dependency tree as show below in Figure 2. This tree diagram will help us in deciding how to configure each host in
NetSaint.

The <parent_host> option in the host defintion for a "remote" host should be the short name of the host directly above it in the tree diagram (as show
below). For example, the parent host for host H would be host G. The parent host for host G is host F. Host F has no parent host, since it is on the network
segment as host A - it is a "local" host.

Figure 2.

Determining Status and Reachability of Network Hosts

http://www.netsaint.org/docs/0_0_6/networkreachability.html (2 of 4) [6/28/2000 8:02:04 AM]

Monitoring Remote Hosts

Checking the status of remote hosts is a bit more complicated that for local hosts. If NetSaint cannot monitor services on a remote host, it needs to
determine whether the remote host is down or whether it is unreachable. Luckily, the <parent_host> option introduced in 0.0.4 allows NetSaint to do this.

If a host check command for a remote host returns a non-OK state, NetSaint will "walk" the depency tree (as shown in the figure above) until it reaches
the top (or until a parent host check results in an OK state). By doing this, NetSaint is able to determine if a service problem is the result of a down host,
an down network link, or just a plain old service failure.

A logic diagram for the host check function is included below in Figure 3. It illustrates how NetSaint determines if a host is down or unreachable.

Determining Status and Reachability of Network Hosts

http://www.netsaint.org/docs/0_0_6/networkreachability.html (3 of 4) [6/28/2000 8:02:04 AM]

Figure 3.

Determining Status and Reachability of Network Hosts

http://www.netsaint.org/docs/0_0_6/networkreachability.html (4 of 4) [6/28/2000 8:02:04 AM]

State Types

Introduction

The current state of services and hosts is determined by two components: the status of the service or host
and the type of state it is in. There are two state types in NetSaint - "soft" states and "hard" states. State
types are a crucial part of NetSaint's monitoring logic. They are used to determine when event handlers
are executed and when notifications are sent out.

Service and Host Check Retries

In order to prevent false alarms, NetSaint allows you to define how many times a service or host check
will be retried before the service or host is considered to have a real problem. The maximum number of
retries before a service or host check is considered to have a real problem is controlled by the
<max_attempts> option in the service and host definitions, respectively. Depending on what attempt a
service or host check is currently on determines what type of state it is is. There are a few exceptions to
this in the service monitoring logic, but we'll ignore those for now. Let's take a look at the different
service state types...

Soft States

Soft states occur for services and hosts in the following situations...
When a service or host check results in a non-OK state and it has not yet been (re)checked the
number of times specified by the <max_attempts> option in the service or host definition. Let's call
this a soft error state...

●

When a service or host recovers from a soft error state. This is considered to be a soft recovery.●

Soft State Events

What happens when a service or host is in a soft error state or experiences a soft recovery?
The soft error or recovery is logged if you enabled the log_service_retries or log_host_retries
options in the main configuration file.

●

Event handlers are executed (if you defined any) to handle the soft error or recovery for the service
or host. (Before any event handler is executed, the $STATETYPE$ macro is set to "SOFT").

●

NetSaint does not send out notifications to any contacts because there is (or was) no "real"
problem with the service or host.

●

As can be seen, the only important thing that really happens during a soft state is the execution of event
handlers. Using event handlers can be particularly useful if you want to try and proactively fix a problem
before it turns into a hard state. More information on event handlers can be found here.

Hard States

Hard states occur for services in the following situations (hard host states are discussed later)...

State Types

http://www.netsaint.org/docs/0_0_6/statetypes.html (1 of 3) [6/28/2000 8:02:07 AM]

When a service check results in a non-OK state and it has been (re)checked the number of times
specified by the <max_attempts> option in the service definition. This is a hard error state.

●

When a service recovers from a hard error state. This is considered to be a hard recovery.●

When a service check results in a non-OK state and its corresponding host is either DOWN or
UNREACHABLE. This is an exception to the general monitoring logic, but makes perfect sense.
If the host isn't up why should we try and recheck the service?

●

Hard states occur for hosts in the following situations...
When a host check results in a non-OK state and it has been (re)checked the number of times
specified by the <max_attempts> option in the host definition. This is a hard error state.

●

When a host recovers from a hard error state. This is considered to be a hard recovery.●

Hard State Changes

Before I discuss what happens when a host or service is in a hard state, you need to know about hard
state changes. Hard state changes occur when a service or host...

changes from a hard OK state to a hard non-OK state●

changes from a hard non-OK state to a hard OK-state●

changes from a hard non-OK state of some kind to a hard non-OK state of another kind (i.e. from a
hard WARNING state to a hard UNKNOWN state)

●

Hard State Events

What happens when a service or host is in a hard error state or experiences a hard recovery? Well, that
depends on whether or not a hard state change (as described above) has occurred.

If a hard state change has occurred and the service or host is in a non-OK state the following things will
occur..

The hard service or host problem is logged.●

Event handlers are executed (if you defined any) to handle the hard problem for the service or host.
(Before any event handler is executed, the $STATETYPE$ macro is set to "HARD").

●

Contacts will be notified of the service or host problem (if the notification logic allows it).●

If a hard state change has occurred and the service or host is in an OK state the following things will
occur..

The hard service or host recovery is logged.●

Event handlers are executed (if you defined any) to handle the hard recovery for the service or
host. (Before any event handler is executed, the $STATETYPE$ macro is set to "HARD").

●

Contacts will be notified of the service or host recovery (if the notification logic allows it).●

If a hard state change has NOT occurred and the service or host is in a non-OK state the following things
will occur..

Contacts will be re-notified of the service or host problem (if the notification logic allows it).●

State Types

http://www.netsaint.org/docs/0_0_6/statetypes.html (2 of 3) [6/28/2000 8:02:07 AM]

If a hard state change has NOT occurred and the service or host is in an OK state nothing happens. This
is because the service or host is in an OK state and was the last time it was checked as well.

Logic Diagrams

Soft and hard states can be a little difficult to understand. The logic diagrams found here may be of some
help.

State Types

http://www.netsaint.org/docs/0_0_6/statetypes.html (3 of 3) [6/28/2000 8:02:07 AM]

Time Periods

or...
"Is This a Good Time?"

Introduction

With the release 0.0.4 the notion of time periods was introduced. Time periods allow you to have greater
control over when service checks may be run, when host and service notifications may be sent out, and
when contacts may receive notifications. With this newly added power come some potential problems, as
I will describe later. I was initially very hesitant to introduce time periods because of these snafus. I'll
leave it up to you to decide what it right for your particular situation...

How Time Periods Work With Service Checks

Previous to release 0.0.4, NetSaint would monitor all services that you had defined 24 hours a day, 7
days a week. While this is fine for most services that need monitoring, it doesn't work out so well for
others. For instance, do you really need to monitor printers all the time when they're really only used
during normal business hours? Perhaps you have development servers which you would prefer to have
up, but aren't "mission critical" and therefore don't have to be monitored for problems over the weekend.
Time period definitions now allow you to have more control over when such services may be checked...

The <check_period> argument of each service definition allows you to specify a time period that tells
NetSaint when the service can be checked. When NetSaint attempts to reschedule a service check, it will
make sure that the next check falls within a valid time range within the defined time period. If it doesn't,
NetSaint will adjust the next service check time to coincide with the next "valid" time in the specified
time period. This means that the service may not get checked again for another hour, day, or week, etc.

Potential Problems With Service Checks

If you use time periods which do not cover a 24x7 range, you will run into problems, especially if a
service (or its corresponding host) is down when the check is delayed until the next valid time in the time
period. Here are some of those problems...

Contacts will not get re-notified of problems with a service until the next service check can be run.1.
If a service recovers during a time that has been excluded from the check period, contacts will not
be notified of the recovery.

2.

The status of the service will appear unchanged (in the status log and CGI) until it can be checked
next.

3.

If all services associated with a particular host are on the same check time period, host problems or
recoveries will not be recognized until one of the services can be checked (and therefore
notifications may be delayed or not get sent out at all).

4.

Limiting the service check period to anything other than a 24 hour a day, 7 days a week basis can cause a
lot of problems. Well, not really problems so much as annoyances and inaccuracies... Unless you have
good reason to do so, I would strongly suggest that you set the <check_period> argument of each service

Time Periods

http://www.netsaint.org/docs/0_0_6/timeperiods.html (1 of 3) [6/28/2000 8:02:10 AM]

definition to a "24x7" type of time period.

How Time Periods Work With Contact Notifications

Probably the best use of time periods is to control when notifications can be sent out to contacts. By
using the <svc_notification_period> and <host_notification_period> arguments in contact definitions,
you're able to essentially define an "on call" period for each contact. Note that you can specify different
time periods for host and service notifications. This is helpful if you want host notifications to go out to
the contact any day of the week, but only have service notifications get sent to the contact on weekdays.
It should be noted that these two notification periods should cover any time that the contact can be
notified. You can control notification times for specific services and hosts on a one-by-one basis as
follows...

By setting the <notification_period> argument of the host definition, you can control when NetSaint is
allowed to send notifications out regarding problems or recoveries for that host. When a host notification
is about to get sent out, NetSaint will make sure that the current time is within a valid range in the
<notification_period> time period. If it is a valid time, then NetSaint will attempt to notify each contact
of the host problem. Some contacts may not receive the host notification if their
<host_notification_period> does not allow for host notifications at that time. If the time is not valid
within the <notification_period> defined for the host, NetSaint will not send the notification out to any
contacts. A logic diagram outlining the basic decisions NetSaint makes when sending out host
notifications can be found here.

You can control notification times for services in a similiar manner to host notification times. By setting
the <notification_period> argument of the service definition, you can control when NetSaint is allowed
to send notifications out regarding problems or recoveries for that service. When a service notification is
about to get sent out, NetSaint will make sure that the current time is within a valid range in the
<notification_period> time period. If it is a valid time, then NetSaint will attempt to notify each contact
of the service problem. Some contacts may not receive the service notification if their
<svc_notification_period> does not allow for service notifications at that time. If the time is not valid
within the <notification_period> defined for the service, NetSaint will not send the notification out to
any contacts. A logic diagram outlining the basic decisions NetSaint makes when sending out service
notifications can be found here.

Potential Problems With Contact Notifications

There aren't really any major problems that you'll run into with using time periods to create custom
contact notification times. You do, however, need to be aware that contacts may not always be notified of
a service or host problem or recovery. If the time isn't right for both the host or service notification period
and the contact notification period, the notification won't go through. Once you weigh the potential
problems of time-restricted notifications against your needs, you should be able to come up with a
configuration that works well for your situation.

Conclusion

Time periods allow you to have greater control of how NetSaint performs its monitoring and notification
functions, but can lead to problems. If you are unsure of what type of time periods to implement, or if

Time Periods

http://www.netsaint.org/docs/0_0_6/timeperiods.html (2 of 3) [6/28/2000 8:02:10 AM]

you are having problems with your current implementation, I would suggest using "24x7" time periods
(where all times are valid for each day of the week). Feel free to contact me if you have questions or are
running into problems.

Time Periods

http://www.netsaint.org/docs/0_0_6/timeperiods.html (3 of 3) [6/28/2000 8:02:10 AM]

http://www.netsaint.org/docs/0_0_6/images/network-outage1.gif

http://www.netsaint.org/docs/0_0_6/images/network-outage1.gif [6/28/2000 8:02:11 AM]

http://www.netsaint.org/docs/0_0_6/images/network-outage2.gif

http://www.netsaint.org/docs/0_0_6/images/network-outage2.gif [6/28/2000 8:02:13 AM]

http://www.netsaint.org/docs/0_0_6/images/notification-process.gif

http://www.netsaint.org/docs/0_0_6/images/notification-process.gif [6/28/2000 8:02:15 AM]

Plugin Theory

Introduction

Unlike many other monitoring tools, NetSaint does not include any internal mechanisms for checking the status of services, hosts,
etc. Instead, NetSaint relies on external programs (called plugins) to do the all the dirty work. NetSaint will execute a plugin
whenever there is a need to check a service or host that is being monitored. The plugin does something (notice the very general term)
to perform the check and then simply returns the results to NetSaint. NetSaint will process the results that it receives from the plugin
and take any necessary actions (running event handlers, sending out notifications, etc).

The image below show how plugins are separated fromt the core program logic in NetSaint. NetSaint executes the plugins which
then check local or remote resources or services of some type. When the plugins have finished checking the resource or service, they
simply pass the results of the check back to NetSaint for processing. A more complex diagram on how plugins work can be found in
the documentation on passive service checks.

The Upside

The good thing about the plugin architecture is that you can monitor just about anything you can think of. If you can automate the
process of checking something, you can monitor it with NetSaint. There are already a lot of plugins that have been created in order to
monitor basic resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the
documentation on writing plugins and roll your own. Its simple!

The Downside

The only real downside to the plugin architecture is the fact that NetSaint has absolutely no idea what it is that you're monitoring.
You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk
space, or the ability of your super-fantastic toaster to properly brown your bread in the morning... As such, NetSaint cannot produce
graphs of changes to the exact values of resources you're monitoring over time. It can only track changes in the state of those
resources. Only the plugins themselves know exactly what they're monitoring and how to perform checks...

Using Plugins For Service Checks

The correlation between plugins and service checks should be fairly obvious. When NetSaint needs to check the status of a particular
service that you have defined, it will execute the plugin you specified in the <check_command> argument of the service definition.
The plugin will check the status of the service or resource you specify and return the results to NetSaint.

Plugin Theory

http://www.netsaint.org/docs/0_0_6/plugintheory.html (1 of 2) [6/28/2000 8:02:18 AM]

Using Plugins For Host Checks

Using plugins to check the status of hosts may be a bit more difficult to understand. In each host definition you use the
<host_check_command> argument to specify a plugin that should be executed to check the status of the host. Host checks are not
performed on a regular basis - they are executed only as needed, usually when there are problems with one or more services that are
associated with the host.

Host checks can use the same plugins as service checks. The only real difference is the important of the plugin results. If a plugin that
is used for a host check results in a non-OK status, NetSaint will believe that the host is down.

In most situations, you'll want to use a plugin which checks to see if the host can be pinged, as this is the most common method of
telling whether or not a host is up. However, if you were monitoring some kind of super-fantastic toaster, you might want to use a
plugin that would check to see if the heating elements turned on when the handle was pushed down. That would give a decent
indication as to whether or not the toaster was "alive".

Plugin Theory

http://www.netsaint.org/docs/0_0_6/plugintheory.html (2 of 2) [6/28/2000 8:02:18 AM]

http://www.netsaint.org/docs/0_0_6/images/noninterleaved1.gif

http://www.netsaint.org/docs/0_0_6/images/noninterleaved1.gif [6/28/2000 8:02:21 AM]

http://www.netsaint.org/docs/0_0_6/images/noninterleaved2.gif

http://www.netsaint.org/docs/0_0_6/images/noninterleaved2.gif [6/28/2000 8:02:23 AM]

http://www.netsaint.org/docs/0_0_6/images/interleaved1.gif

http://www.netsaint.org/docs/0_0_6/images/interleaved1.gif [6/28/2000 8:02:25 AM]

http://www.netsaint.org/docs/0_0_6/images/interleaved2.gif

http://www.netsaint.org/docs/0_0_6/images/interleaved2.gif [6/28/2000 8:02:27 AM]

Indirect Host and Service Checks

Introduction

Chances are, many of the services that you're going to be monitoring on your network can be checked
directly by using a plugin on the host that runs NetSaint. Examples of services that can be checked
directly include availability of web, email, and FTP servers. These services can be checked directly by a
plugin from the NetSaint host because they are publicly accessible resources. However, there are a
number of things you may be interested in monitoring that are not as publicly accessible as other
services. These "private" resources/services include things like disk usage, processor load, etc. on remote
machines. Private resources like these cannot be checked without the use of an intermediary agent.
Service checks which require an intermediary agent of some kind to actually perform the check are called
indirect checks.

Indirect checks are useful for:
Monitoring "local" resources (such as disk usage, processer load, etc.) on remote hosts●

Monitoring services and hosts behind firewalls●

Obtaining more realistic results from checks of time-sensitive services between remote hosts (i.e.
ping response times between two remote hosts)

●

There are several methods for performing indirect active checks (passive checks are not discussed here),
but I will only talk about how they can be done by using the nrpe addon. The nrpep and netsaint_statd
can also be used to perform indirect checks.

Indirect Service Checks

The diagram below shows how indirect service checks work. Click the image for a larger version...

Indirect Host and Service Checks

http://www.netsaint.org/docs/0_0_6/indirectchecks.html (1 of 4) [6/28/2000 8:02:35 AM]

Multiple Indirected Service Checks

If you are monitoring servers that lie behind a firewall (and the host running NetSaint is outside that
firewall), checking services on those machines can prove to be a bit of a pain. Chances are that you are
blocking most incoming traffic that would normally be required to perform the monitoring. One solution
for performing active checks (passive checks could also be used) on the hosts behind the firewall would
be to poke a tiny hold in the firewall filters that allow the NetSaint host to make calls to the nrpe daemon
on one host inside the firewall. The host inside the firewall could then be used as an intermediary in
performing checks on the other servers inside the firewall.

The diagram below show how multiple indirect service checks work. Notice how the nrpe daemon is
running on hosts #1 and #2. The copy that runs on host #2 is used to allow the nrpe agent on host #1 to
perform a check of a "private" service on host #2. "Private" services are things like process load, disk
usage, etc. that are not directly exposed like SMTP, FTP, and web services. Click on the diagram for a

Indirect Host and Service Checks

http://www.netsaint.org/docs/0_0_6/indirectchecks.html (2 of 4) [6/28/2000 8:02:35 AM]

larger image...

Indirect Host Checks

Indirect host checks work on the same principle as indirect service checks. Basically, the plugin used in
the host check command asks an intermediary agent (i.e. a daemon running on a remote host) to perform
the host check for it. Indirect host checks are useful when the remote hosts being monitored are located
behind a firewall and you want to restrict inbound monitoring traffic to a particular machine. That
machine (remote host #1 in the diagram below) performs will perform the host check and return the
results back to the top level check_nrpe plugin (on the central server). It should be noted that with this
setup comes potential problems. If remote host #1 goes down, the check_nrpe plugin will not be able to
contact the nrpe daemon and NetSaint will believe that remote hosts #2, #3, and #4 are down, even
though this may not be the case. If host #1 is your firewall machine, then the problem isn't really an issue
because NetSaint will detect that it is down and mark hosts #2, #3, and #4 as being unreachable.

Indirect Host and Service Checks

http://www.netsaint.org/docs/0_0_6/indirectchecks.html (3 of 4) [6/28/2000 8:02:35 AM]

The diagram below shows how an indirect host check can be performed by using the nrpe daemon and
check_nrpe plugin. Click the image for a larger version.

Indirect Host and Service Checks

http://www.netsaint.org/docs/0_0_6/indirectchecks.html (4 of 4) [6/28/2000 8:02:35 AM]

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck.gif

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck.gif [6/28/2000 8:02:36 AM]

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck2.gif

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck2.gif (1 of 2) [6/28/2000 8:02:38 AM]

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck2.gif

http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck2.gif (2 of 2) [6/28/2000 8:02:38 AM]

http://www.netsaint.org/docs/0_0_6/images/indirecthostcheck.gif

http://www.netsaint.org/docs/0_0_6/images/indirecthostcheck.gif (1 of 2) [6/28/2000 8:02:41 AM]

http://www.netsaint.org/docs/0_0_6/images/indirecthostcheck.gif

http://www.netsaint.org/docs/0_0_6/images/indirecthostcheck.gif (2 of 2) [6/28/2000 8:02:41 AM]

http://www.netsaint.org/docs/0_0_6/images/activepassive.gif

http://www.netsaint.org/docs/0_0_6/images/activepassive.gif [6/28/2000 8:02:43 AM]

http://www.netsaint.org/docs/0_0_6/images/distributed.gif

http://www.netsaint.org/docs/0_0_6/images/distributed.gif (1 of 2) [6/28/2000 8:02:45 AM]

http://www.netsaint.org/docs/0_0_6/images/distributed.gif

http://www.netsaint.org/docs/0_0_6/images/distributed.gif (2 of 2) [6/28/2000 8:02:45 AM]

Status File Format

Introduction

In order to give external applications (such as the CGIs) access to the current host and service status information in NetSaint, all status information is saved to the file specified by the status_file option in the main config file. External applications can read the contents of this file to determine the current status of any monitored host or service. External applications should not write anything to the status file. NetSaint does not read the status file to determine current
service and host information - it is simply provided as a means for third-party apps to access the internal status information in an easy manner.

File Format

The status file contains three types of entries: a program entry, one or more host status entries, and one or more service status entries. The format for each type of entry it described below.

Program Entry Format:

[<timestamp>] PROGRAM;<start_time>;<daemon_mode>;<program_mode>;<last_mode_change>;<last_command_check>;<last_log_rotation>;<executing_service_checks>;<accept_passive_service_checks>;<enable_event_handlers>;<obsess_over_services>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the program entry was last updated.●

start_time is the time in time_t format (seconds since UNIX epoch) that NetSaint was last (re)started.●

daemon_mode in an integer that indicates whether or not NetSaint is running as a daemon. If this value is 1, NetSaint is running in daemon mode. If this value is 0, NetSaint is running as a normal (foreground or background) process.●

program_mode a string which identifies what program mode NetSaint is currently in. If this string is "ACTIVE", NetSaint is in active mode. If this string is "STANDBY", NetSaint is in standby mode.●

last_mode_change is the time in time_t format (seconds since UNIX epoch) when the last program mode change occurred.●

last_command_check is the time in time_t format (seconds since UNIX epoch) that NetSaint last checked for external commands. A value of zero means that NetSaint has not checked for external commands since it was last (re)started.●

last_log_rotation is the time in time_t format (seconds since UNIX epoch) that NetSaint last rotated the main log file. A value of zero means that the log file has not been rotated since NetSaint was last (re)started.●

execute_service_checks in an integer that indicates whether or not NetSaint is actively executing service checks. Values: 0=checks are *not* being executed, 1=checks are being executed.●

accept_passive_service_checks in an integer that indicates whether or not NetSaint is accepting passive service checks. Values: 0=passive service checks are *not* being accepted, 1=passive checks are being accepted.●

enable_event_handlers in an integer that indicates whether or not host and service event handlers are enabled. Values: 0=event handlers are *not* enabled, 1=event handlers are enabled.●

obsess_over_services in an integer that indicates whether or not is running "obsessing" over service check results and running a obsessive service check processor command. Values: 0=Netsiant is *not* obsessing, 1=NetSaint is obsessing.●

Host Status Format:

[<timestamp>] HOST; <host_name>;<state>;<last_state_change>;<problem_has_been_acknowledged>;<time_up>;<time_down>;<time_unreachable>;<last_notification>;<current_notification_number>;<notifications_enabled>;<event_handler_enabled>;<checks_enabled>;<plugin_output>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the host was last checked (or its current state was assumed).●

host_name is the short name of the host (as defined in the host configuration file) that the state information corresponds to.●

state is a string that indicates the current state of the host. Values include "PENDING", "UP", "DOWN", and "UNREACHABLE".●

last_state_change is the time in time_t format (seconds since UNIX epoch) that the host last experienced a hard state change.●

problem_has_been_acknowledged is an integer indicating whether or not this host problem has been acknowledged. If the host is UP, or it is DOWN or UNREACHABLE and has not been acknowledged, this is set to 0. If this host is DOWN or UNREACHABLE and the problem has been acknowledged, this is set to 1.●

time_up is the number of seconds (since monitoring began) that the host has been in an UP state.●

time_down is the number of seconds (since monitoring began) that the host has been in a DOWN state.●

time_unreachable is the number of seconds (since monitoring began) that the host has been in an UNREACHABLE state.●

last_notification is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the last notification for this host was sent out. If no notifications have been sent out (or if the host is UP), this value is set to zero.●

current_notification_number is an integer representing the number of notifications that have been sent out about this host problem. If no notifications have been sent out since the host last changed state (of if it is in an UP state), this value is set to zero.●

notifications_enabled is an integer that indicates whether or not notifications for this host are enabled. Values: 0=notifications are *not* enabled, 1=notifications are enabled.●

event_handler_enabled is an integer that indicates whether or not the event handler for this host are enabled. Values: 0=event handler is *not* enabled, 1=event handler is enabled.●

checks_enabled is an integer that indicates whether or not checks this host are enabled. Values: 0=checks are *not* enabled, 1=checks are enabled.●

plugin_output is the output from the last host check (text)●

Service Status Format:

[<timestamp>] SERVICE;
<host_name>;<svc_description>;<state>;<current_attempt>/<max_attempts>;<state_type>;<next_check>;<check_type>;<checks_enabled>;<passive_checks_accepted>;<last_state_change>;<problem_has_been_acknowledged>;<last_hard_state>;<time_ok>;<time_unknown>;<time_warning>;<time_critical>;<last_notification>;<current_notification_number>;<notifications_enabled>;<check_latency>;<execution_time>;<plugin_output>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the service was last checked.●

host_name is the short name of the host that this service is associated with.●

svc_description is the description of the service (as defined in the host configuration file) that the state information corresponds to. Together, the host_name and svc_description fields uniquely identify a service definition.●

state is string indicating the current state of the service. Values include "OK", "UNKNOWN", "WARNING", "CRITICAL", "RECOVERY", "UNREACHABLE", and "HOST DOWN". A value of "RECOVERY" indicates that the service is in an OK state, but just recovered from a non-OK state. Values of "UNREACHABLE" and "HOST DOWN" indicate that the host that the service is associated with is either down or unreachable.●

current_attempt is an integer representing the current service check attempt number. This value will be set to 1 if the host that the service is associated with is either down or unreachable.●

max_attempts is an integer representing the maximum number of check attempts for this service.●

state_type is a string indicating what type of state the service is currently in. Values include "SOFT" and "HARD".●

next_check is the time in time_t format (seconds since UNIX epoch) that the service is next scheduled to be checked.●

check_type is a string indicating what type of service check this was. Values include "ACTIVE" and "PASSIVE".●

checks_enabled is an integer representing whether or not checks for this service are enabled. Values: 0=checks are *not* enabled, 1=checks are enabled.●

accept_passive_checks is an integer representing whether or not passive checks are being accepted for this service. Values: 0=passive checks are *not* being accepted, 1=passive checks are being accepted.●

event_handler_enabled is an integer representing whether or not the event handler for this service is enabled. Values: 0=event handler is *not* enabled, 1=event handler is enabled.●

passive_checks_accepted is an integer representing whether or not passive checks are being accepted for this service. If this value is 1, they are being accepted. If this value is 0, passive checks are not being accepted.●

last_state_change is the time in time_t format (seconds since UNIX epoch) that the service last had a hard state change.●

problem_has_been_acknowledged is an integer indicating whether or not this service problem has been acknowledged. If the service is in an OK state, or it is in a non-OK state and has not been acknowledged, this is set to 0. If this service is in a non-0K state and the problem has been acknowledged, this is set to 1.●

last_hard_state is a string that indicates the last hard state of the service. Values include "OK", "UNKNOWN", "WARNING", and "CRITICAL".●

time_ok is the number of seconds that the service has been in an OK state.●

time_warning is the number of seconds that the service has been in a WARNING state.●

time_unknown is the number of seconds that the service has been in an UNKNOWN state.●

time_critical is the number of seconds that the service has been in a CRITICAL state.●

last_notification is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the last notification for this service was sent out. If no notifications have been sent out or if the service is currently in an OK state, this value is set to zero.●

current_notification_number is an integer representing the number of notifications that have been sent out about this service problem. If no notifications have been sent out since the service last changed state (of if it is in an OK state), this value is set to zero.●

notifications_enabled is an integer that indicates whether or not notifications for this service have been enabled. Values: 0=notifications are *not* enabled, 1=notifications are enabled.●

check_latency is an integer indicating the number of seconds that the service check lagged behind its scheduled execution time (actual execution time - scheduled execution time = latency)●

execution_time is an integer indicating the number of seconds that this service check took to execute●

plugin_output is the output from the last service check (text)●

Status File Format

http://www.netsaint.org/docs/0_0_6/developer/statusfile.html [6/28/2000 8:02:48 AM]

http://www.netsaint.org/docs/0_0_6/developer/configmain.html#oscp_command

Comment File Format

Introduction

In order to help share information among administrators, techs, etc., NetSaint allows comments to be
added to all hosts and services that are being monitored. The comments are stored in the file specified by
the comment_file directive in the main configuration file.

It should be noted that NetSaint "cleans" the comment file each time it restarts. During the cleaning
process, NetSaint will remove all comments that are not marked as being persistent or that do not
correspond to valid hosts or services that you have defined, and it will re-number all comment IDs.

Adding Comments

If you wish to use or write an external application that adds comments to hosts or services, you should
not write comments directly to the comment file. Instead, use the ADD_SVC_COMMENT and
ADD_HOST_COMMENT external commands. The commands should be written to the external
command file. NetSaint will periodically scan the external command file and process any commands it
finds in there.

Deleting Comments

Similiarly, if you want to delete one or more comments from the command file, use the
DEL_SVC_COMMENT, DEL_HOST_COMMENT, DEL_ALL_SVC_COMMENTS, or
DEL_ALL_HOST_COMMENTS external commands. Do not modify the contents of the comment file
yourself!

File Format

The comment file contains two types of entries: host comments and service comments. The format for
each type of comment it described below.

Host Comment Format:

[<timestamp>] HOST_COMMENT;<id>;<host_name>;<persistent>;<author>;<comment>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the comment was entered
by the user.

●

id is a comment identification number which is unique among other host and service comments.
This number is generated by NetSaint and cannot be specified by the user.

●

host_name is the short name of the host (as defined in the host configuration file) that the comment
is associated with.

●

persistent is a flag which indicated whether the comment is persistent or not. Persistent comments
survive program restarts, while non-persistent comments are deleted when NetSaint is restarted. A
value of 0 indicates that the comment is non-persistent, while a value of 1 indicates that it is

●

Comment File Format

http://www.netsaint.org/docs/0_0_6/developer/commentfile.html (1 of 2) [6/28/2000 8:02:50 AM]

persistent.
author is a text field that contains the name of the person who entered the comment.●

comment is a text field that contains the actual comment.●

Service Comment Format:

[<timestamp>]
SERVICE_COMMENT;<id>;<host_name>;<svc_description>;<persistent>;<author>;<comment>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the comment was entered
by the user.

●

id is a comment identification number which is unique among other host and service comments.
This number is generated by NetSaint and cannot be specified by the user.

●

host_name is the short name of the host that the service is associated with.●

svc_descriptionis the description of the service (as defined in the host configuration file) that the
comment is associated with. Together the host_name and svc_description uniquely identiry a
particular service.

●

persistent is a flag which indicated whether the comment is persistent or not. Persistent comments
survive program restarts, while non-persistent comments are deleted when NetSaint is restarted. A
value of 0 indicates that the comment is non-persistent, while a value of 1 indicates that it is
persistent.

●

author is a text field that contains the name of the person who entered the comment.●

comment is a text field that contains the actual comment.●

Comment File Format

http://www.netsaint.org/docs/0_0_6/developer/commentfile.html (2 of 2) [6/28/2000 8:02:50 AM]

State Retention File Format

Introduction

In order to preserve host and service state information (current status, state time statistics, etc.) between program restarts, users can opt to enable the state retention feature by using the retain_state_information option in the main config file. If this option is enabled, state retention information is stored in the file specified by the
state_retention_file directive in the main configuration file. Immediately before shutting down (or restarting) NetSaint will write all current host and service state information to the retention file. Upong restarting, NetSaint will read the information stored in the retention file, initialize host and service information, and delete the file.

At any time while NetSaint is running, you can have it save service and host state information, by using the SAVE_STATE_INFORMATION external command. You can also force NetSaint to read in previously save state information by using the READ_STATE_INFORMATION command, although this is not recommend, as the current state
information that NetSaint has will be replaced with whatever is stored in the state retention file.

It should be noted that NetSaint will only save state information for service and hosts that have been checked at the time the file is written. Also, NetSaint will only save the last hard state for the host or service.

File Format

The state retention file contains four types of entries: a creation timestamp, program state information, host state information and service state information. The format for each type of entry it described below.

Creation Time Format:

CREATED: <timestamp>

where...
timestamp is the time in time_t format (seconds since UNIX epoch) that the state information was saved.●

Program Information Format:

PROGRAM: <program_mode>;<execute_service_checks>;<accept_passive_service_checks>;<enable_event_handlers>;<obsess_over_services>

where...
program_mode is an integer that represents the last program mode that NetSaint was in. Values: 0=standby mode, 1=active mode.●

execute_service_checks is an integer indicating whether or not service checks were being executed when NetSaint was running. Values: 0=checks were *not* being executed, 1=checks were being executed.●

accept_passive_service_checks is an integer indicating whether or not passive service checks were being accepted when NetSaint was running. Values: 0=passive checks were *not* being accepted, 1=passive checks were being accepted.●

enable_event_handlers is an integer indicating whether or not host and service event handlers were enabled when NetSaint was running. Values: 0=event handlers were *not* enabled, 1=event handlers were enabled.●

obsess_over_services is an integer indicating whether or not NetSaint was obsessing over service checks when it was running. Values: 0=NetSaint was *not* obsessing, 1=NetSaint was obsessing.●

Host Information Format:

HOST: <host_name>;<state>;<last_check>;<checks_enabled>;<time_up>;<time_down>;<time_unreachable>;<last_notification>;<current_notification_number>;<current_notification_number>;<notifications_enabled>;<event_handler_enabled>;<problem_has_been_acknowledged>;<plugin_output>

where...
host_name is the short name of the host (as defined in the host configuration file) that the state information corresponds to.●

state is an integer corresponding to the state of the host (UP, DOWN, or UNREACHABLE). See the base/netsaint.h file for the integer values of different states.●

last_check is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the host status was last checked.●

checks_enabled is an integer indicating whether or not checks of this host have been enabled. Values: 0=checks have been disabled, 1=checks are enabled.●

time_up is the number of seconds that the host has been in an UP state.●

time_down is the number of seconds that the host has been in a DOWN state.●

time_unreachable is the number of seconds that the host has been in an UNREACHABLE state.●

last_notification is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the last notification for this host was sent out. If no notifications have been sent out, this value is set to zero.●

current_notification_number is an integer representing the number of notifications that have been sent out about this host problem. If no notifications have been sent out since the host last changed state (of if it is in an UP state), this value is set to zero.●

notifications_enabled is an integer that indicates whether or not notifications for this host have been enabled. Values: 0=notifications have been disabled, 1=notifications are enabled.●

event_handler_enabled is an integer indicating whether or not the event handler for this host has been enabled. Value: 0=event handler has been disabled, 1=event handler is enabled.●

problem_has_been_acknowledged is an integer indicating whether or not this host problem has been acknowledged. If the host is UP, or it is DOWN or UNREACHABLE and has not been acknowledged, this is set to 0. If this host is DOWN or UNREACHABLE and the problem has been acknowledged, this is set to 1.●

plugin_output is the output from the last host check (text)●

Service Information Format:

SERVICE:
<host_name>;<svc_description>;<state>;<last_check>;<time_ok>;<time_warning>;<time_unknown>;<time_critical>;<last_notification>;<current_notification_number>;<notifications_enabled>;<checks_enabled>;<accept_passive_checks>;<event_handler_enabled>;<problem_has_been_acknowledged>;<plugin_output>

where...
host_name is the short name of the host that this service is associated with.●

svc_description is the description of the service (as defined in the host configuration file) that the state information corresponds to. Together, the host_name and svc_description fields uniquely identify a service definition.●

state is an integer corresponding to the state of the state (OK, WARNING, UNKNOWN, or CRITICAL). See the base/netsaint.h file for the exact values of different states.●

last_check is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the service status was last checked.●

time_ok is the number of seconds that the service has been in an OK state.●

time_warning is the number of seconds that the service has been in a WARNING state.●

time_unknown is the number of seconds that the service has been in an UNKNOWN state.●

time_critical is the number of seconds that the service has been in a CRITICAL state.●

last_notification is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates when the last notification for this service was sent out. If no notifications have been sent out, this value is set to zero.●

current_notification_number is an integer representing the number of notifications that have been sent out about this host problem. If no notifications have been sent out since the host last changed state (of if it is in an UP state), this value is set to zero.●

notifications_enabled is an integer that indicates whether or not notifications for this service have been enabled. Values: 0=notifications have been disabled, 1=notifications are enabled.●

checks_enabled is an integer that indicates whether or not checks of this service have been enabled. Values: 0=checks have been disabled, 1=checks are enabled.●

accept_passive_checks is an integer representing whether or not passive checks are being accepted for this service. If this value is 1, they are being accepted. If this value is 0, passive checks are not being accepted.●

event_handler_enabled is an integer indicating whether or not the event handler for this service has been enabled. Value: 0=event handler has been disabled, 1=event handler is enabled.●

problem_has_been_acknowledged is an integer indicating whether or not this service problem has been acknowledged. If the service is in an OK state, or it is in a non-OK state and has not been acknowledged, this is set to 0. If this service is in a non-0K state and the problem has been acknowledged, this is set to 1.●

plugin_output is the output from the last service check (text)●

State Retention File Format

http://www.netsaint.org/docs/0_0_6/developer/stateretentionfile.html [6/28/2000 8:02:52 AM]

Fun Stuff

Have a little too much free time on your hands? Well, instead of playing Quake , you could try out some of the following things
that you can do with NetSaint...

Create a virtual network assistant that speaks!

The Lowdown

By utilizing event handlers and some speech software, you can have NetSaint talk to you and tell you whats wrong with your
network.

Completely Scientific Ratings

Funness Rating: 100%
Ability To Impress Co-Workers Rating: 100%
Usefulness Rating: 30%
Wise Use Of System Resources Rating: 5%

The Upsides
It gives immediate audio feedback on the status of your network, which is quite useful if you're in the server room
working on other things

●

It will impress your boss and co-workers...●

The Downsides
Its a bit of a waste of system resources, so its not really fit for production machines●

If you're in the server room alone on a weekend or at night, having a machine start talking can scare the living daylights
out of you. It has happened to me before...

●

Give Me Details!

First off, you need speech software installed on your system. I would recommend using the Festival Speech Synthesis System
developed by The Centre for Speech Technology Research at the University of Edinburgh. This package provides the basic
framework needed for converting text into spoken word. In order to use Featival in a practical manner you'll also need to install
speechd. The speechd software implements /dev/speech and will queue all text written to it for processing by the Festival sound
system. Once you've installed the speech software and tested it to make sure it works properly, you can move on to the next
step...

In order to make NetSaint report system status via the speech software you'll have to write some event handlers. If you want
audio alerts for only certain hosts or services, you'll have to define event handlers in the appropriate host and service definitions.
If you want audio alerts for everything, you can just use the global_host_event_handler and global_service_event_handler
definitions in the main configuration file. I've chosen to use global event handlers to make things easier to implement.

The global event handler definitions in my main configuration file look like this...

global_host_event_handler=global-hst-event-handler

global_service_event_handler=global-svc-event-handler

The command definitions for my global event handlers look like this...

command[global-hst-event-handler]=/usr/local/netsaint/libexec/eventhandlers/hst_event_handler $HOST NAME$
"$HOSTALIAS$" $HOSTSTATE$ $STATETYPE$ $HOSTATTEMPT$

command[global-svc-event-handler]=/usr/local/netsaint/libexec/eventhandlers/svc_event_handler $HOSTNAME$
"$HOSTALIAS$" "$SERVICEDESC$" $SERVICESTATE$ $STATETYPE$ $SERVICEATTEMPT$

Fun Stuff

http://www.netsaint.org/docs/0_0_6/funstuff.html (1 of 3) [6/28/2000 8:02:55 AM]

http://www.idsoftware.com/quake/
http://www.cstr.ed.ac.uk/projects/festival/
http://www.speechio.org/

So what do the event handler scripts look like? The event handlers I use are listed below. A copy of these scripts is available in
the eventhandlers/ subdirectory of the distribution. You may have to modify things to work on your system...

Global Host Event Handler (hst_event_handler)

#!/bin/sh

###
NetSaint Global Host Event Handler
#
Arguments:
#
$1 = host short name
$2 = host alias (long name)
$3 = state
$4 = state type (HARD or SOFT)
$5 = current attempt number
#
###

echocmd="/bin/echo"
festivalcmd="/dev/speech"

case $4 in
 HARD)
 case $3 in
 UP)
 $echocmd "Good news! Host $2 has RECOVERED!" > $festivalcmd
 ;;
 DOWN)
 $echocmd "Attention... Host $2 is $3. This is a critical state. Please check host
status!" > $festivalcmd
 ;;
 UNREACHABLE)
 $echocmd "Attention... Host $2 is $3. This is a critical state. Please check
network connectivity!" > $festivalcmd
 ;;
 esac
 ;;
 SOFT)
 case $3 in
 UP)
 ;;
 DOWN)
 $echocmd "Attention... Host $2 is in a $4 $3 state. Attempt number $5" >
$festivalcmd
 ;;
 UNREACHABLE)
 $echocmd "Attention... Host $2 is in a $4 $3 state. Attempt number $5" >
$festivalcmd
 ;;
 esac
 ;;
esac

exit 0

Global Service Event Handler (svc_event_handler)

Fun Stuff

http://www.netsaint.org/docs/0_0_6/funstuff.html (2 of 3) [6/28/2000 8:02:55 AM]

#!/bin/sh

###
NetSaint Global Service Event Handler
#
Arguments:
#
$1 = host short name
$2 = host alias (long name)
$3 = service description
$4 = state
$5 = state type (HARD or SOFT)
$6 = current attempt number
#
###

echocmd="/bin/echo"
festivalcmd="/dev/speech"

case $5 in
 HARD)
 case $4 in
 OK)
 $echocmd "Good news! Service $3 on $2 has RECOVERED!" > $festivalcmd
 ;;
 CRITICAL)
 $echocmd "Attention... Service $3 on $2 is in a $4 state. Please check service!"
> $festivalcmd
 ;;
 WARNING)
 $echocmd "Attention... Service $3 on $2 is in a $4 state. Please check service!"
> $festivalcmd
 ;;
 UNKNOWN)
 $echocmd "Attention... Service $3 on $2 is in a $4 state. Please check service!"
> $festivalcmd
 ;;
 esac
 ;;
 SOFT)
 case $4 in
 OK)
 ;;
 CRITICAL)
 $echocmd "Attention. Service $3 on $2 is in a $5 $4 state." > $festivalcmd
 ;;
 WARNING)
 $echocmd "Attention. Service $3 on $2 is in a $5 $4 state." > $festivalcmd
 ;;
 UNKNOWN)
 $echocmd "Attention. Service $3 on $2 is in a $5 $4 state." > $festivalcmd
 ;;
 esac
 ;;
esac

exit 0

That's it! Fire up NetSaint and listen to it tell you about your problems...

Fun Stuff

http://www.netsaint.org/docs/0_0_6/funstuff.html (3 of 3) [6/28/2000 8:02:55 AM]

	netsaint.org
	NetSaint Documentation
	About NetSaint
	Information On The CGIs
	What's New
	Host Configuration File Options
	External Commands
	Passive Service Checks
	Volatile Services
	Notification Escalations
	Distributed Monitoring
	Network Outages
	Main Configuration File Options
	CGI Configuration File Options
	Using Macros In Commands
	NetSaint Developer Documentation
	Installing NetSaint
	Event Handlers
	Redundant Network Monitoring
	NetSaint Plugins
	Configuring NetSaint
	Installing The Web Interface
	Authentication And Authorization In The CGIs
	Verifying Your NetSaint Configuration
	Program Modes
	NetSaint FAQs
	NetSaint Status Levels
	Service Check Parallelization
	Service Check Scheduling
	Notifications
	NetSaint Theory of Operation
	Plugin Development Guidelines
	Starting NetSaint
	Stopping and Restarting NetSaint
	NetSaint Plugins
	NetSaint Addons
	Determining Status and Reachability of Network Hosts
	State Types
	Time Periods
	http://www.netsaint.org/docs/0_0_6/images/network-outage1.gif
	http://www.netsaint.org/docs/0_0_6/images/network-outage2.gif
	http://www.netsaint.org/docs/0_0_6/images/notification-process.gif
	Plugin Theory
	http://www.netsaint.org/docs/0_0_6/images/noninterleaved1.gif
	http://www.netsaint.org/docs/0_0_6/images/noninterleaved2.gif
	http://www.netsaint.org/docs/0_0_6/images/interleaved1.gif
	http://www.netsaint.org/docs/0_0_6/images/interleaved2.gif
	Indirect Host and Service Checks
	http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck.gif
	http://www.netsaint.org/docs/0_0_6/images/indirectsvccheck2.gif
	http://www.netsaint.org/docs/0_0_6/images/indirecthostcheck.gif
	http://www.netsaint.org/docs/0_0_6/images/activepassive.gif
	http://www.netsaint.org/docs/0_0_6/images/distributed.gif
	Status File Format
	Comment File Format
	State Retention File Format
	Fun Stuff

	linuxave.net
	The Linuxbox® Network - 404 (File Not Found)

	EBDIKJFKKAJBBDCPCADOLFPHNFCPGLFO:
	form1:
	x:
	f1: yournamehere.com

	f2:

