

CD4541B

CMOS Programmable Timer High Voltage Types (20V Rating)

July 1998

Features

- Low Symmetrical Output Resistance, Typically 100 Ω at V_{DD} = 15V
- Built-In Low-Power RC Oscillator
- Oscillator Frequency Range..... DC to 100kHz
- External Clock (Applied to Pin 3) can be Used Instead of Oscillator
- Operates as 2^N Frequency Divider or as a Single-Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- AUTO or MASTER RESET Disables Oscillator During Reset to Reduce Power Dissipation
- Operates With Very Slow Clock Rise and Fall Times
- Capable of Driving Six Low Power TTL Loads, Three Low-Power Schottky Loads, or Six HTL Loads Over the Rated Temperature Range
- Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- . 5V, 10V, and 15V Parametric Ratings
- Meets All Requirements of JEDEC Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

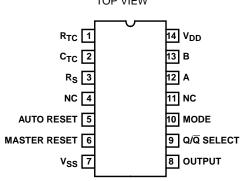
Ordering Information

PART NUMBER	TEMP. RANGE (°C) PACKAGE		PKG. NO.
CD4541BF	-55 to 125	14 Ld CERDIP	F14.3
CD4541BE	-55 to 125	14 Ld PDIP	E14.3
CD4541BH	-55 to 125	Chip	-
CD4541BM	-55 to 125	14 Ld SOIC	M14.15

Description

CD4541B programmable timer consists of a 16-stage binary counter, an oscillator that is controlled by external R-C components (2 resistors and a capacitor), an automatic power-on reset circuit, and output control logic. The counter increments on positive-edge clock transitions and can also be reset via the MASTER RESET input.

The output from this timer is the Q or \overline{Q} output from the 8th, 10th, 13th, or 16th counter stage. The desired stage is chosen using time-select inputs A and B (see Frequency Select Table). The output is available in either of two modes selectable via the MODE input, pin 10 (see Truth Table). When this MODE input is a logic "1", the output will be a continuous square wave having a frequency equal to the oscillator frequency divided by 2^N . With the MODE input set to logic "0" and after a MASTER RESET is initiated, the output (assuming Q output has been selected) changes from a low to a high state after 2^{N-1} counts and remains in that state until another MASTER RESET pulse is applied or the MODE input is set to a logic "1".


Timing is initialized by setting the AUTO RESET input (pin 5) to logic "0" and turning power on. If pin 5 is set to logic "1", the AUTO RESET circuit is disabled and counting will not start until after a positive MASTER RESET pulse is applied and returns to a low level. The AUTO RESET consumes an appreciable amount of power and should not be used if low-power operation is desired. For reliable automatic power-on reset, $V_{\mbox{\scriptsize DD}}$ should be greater than 5V.

The RC oscillator, shown in Figure 2, oscillates with a frequency determined by the RC network and is calculated using:

$$f = \frac{1}{2.3~R_{TC}C_{TC}} \qquad \begin{array}{l} \text{Where f is between 1kHz} \\ \text{and 100kHz} \\ \text{and R}_{\c S} \geq 10 k\Omega \ \ \text{and} \approx 2 R_{\c TC} \end{array}$$

Pinout

CD4541B (CERDIP, PDIP, SOIC) TOP VIEW

Functional Diagram R_S AR 5 MR 10 **V_{DD}** = **PIN** 14 MODE -V_{SS} = PIN 7 Q/Q SELECT Functional Block Diagram 12 13 †A †B

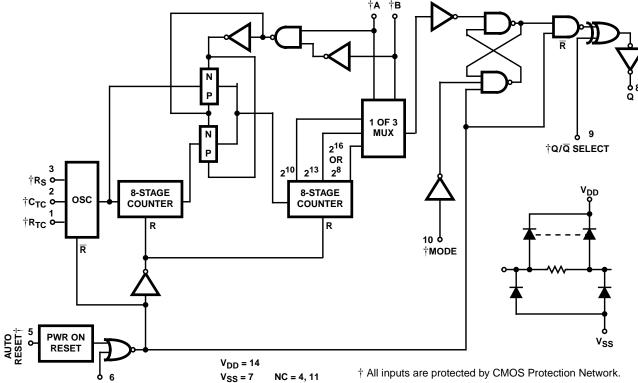


FIGURE 1.

FREQUENCY SELECTION TABLE

MANUAL RESETT

А	В	NO. OF STAGES N	COUNT 2 ^N
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

TRUTH TABLE

	STATE								
PIN	0	1							
5	Auto Reset On	Auto Reset Disable							
6	Master Reset Off	Master Reset On							
9	Output Initially Low After Reset (Q)	Output Initially High After Reset $(\overline{\mathbb{Q}})$							
10	Single Transition Mode	Recycle Mode							

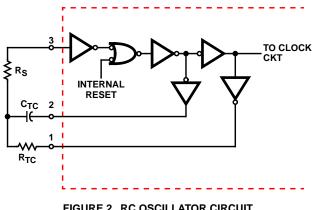


FIGURE 2. RC OSCILLATOR CIRCUIT

CD4541B

Absolute Maximum Ratings

DC Supply - Voltage Range, $V_{\mbox{\scriptsize DD}}$ Voltages Referenced to V_{SS} Terminal -0.5V to +20V Input Voltage Range, All Inputs -0.5V to $V_{\mbox{DD}}$ +0.5V DC Input Current, Any One Input ±10mA Device Dissipation Per Output Transistor For T_A = Full Package Temperature Range

Operating Conditions

Temperature Range T_A -55°C to 125°C Supply Voltage Range

For $T_A = Full Package Temperature Range 3V (Min), 18V (Typ)$

Thermal Information

Thermal Resistance (Typical, Note 1)	θ_{JA} (°C/W)	θ_{JC} (oC/W)
PDIP Package	90	N/A
CERDIP Package	90	36
SOIC Package	120	N/A
Maximum Junction Temperature (Plastic P	ackage)	150 ^o C
Maximum Storage Temperature Range (T	STG)65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10	Os)	
At Distance 1/16in \pm 1/32in (1.59mm \pm 0		
from case for 10s Maximum		265 ⁰ C
(SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications

	S	LIMITS AT INDICATED TEMPERATURES (°C)									
	V	v	V						25		1
PARAMETER	(V)	V _{IN} (V)	V _{DD} (V)	-55	-40	85	125	MIN	TYP	МАХ	UNITS
Quiescent Device	-	0, 5	5	5	5	150	150	-	0.04	5	μΑ
Current, (Note 2) I _{DD} (Max)	-	0, 10	10	10	10	300	300	-	0.04	10	μΑ
	-	0, 15	15	20	20	600	600	-	0.04	20	μΑ
	-	0, 20	20	100	100	3000	3000	-	0.08	100	μА
Output Low (Sink)	0.4	0, 5	5	1.9	1.85	1.26	1.08	1.55	3.1	-	μΑ
Current I _{OL} (Min)	0.5	0, 10	10	5	4.8	3.3	2.8	4	8	-	μА
	1.5	0, 15	15	12.6	12	8.4	7.2	10	20	-	μА
Output High (Source)	4.6	0, 5	5	-1.9	-1.85	-1.26	-1.08	-1.55	-3.1	-	mA
Current, I _{OH} (Min)	2.5	0, 5	5	-6.2	-6	-4.1	-3	-5	-10	-	mA
	9.5	0, 10	10	-5	-4.8	-3.3	-2.8	-4	-8	-	mA
	13.5	0, 15	15	-12.6	-12	-8.4	-7.2	-10	-20	-	mA
Output Voltage:	-	0, 5	5	-		0.05	•	-	0	0.05	mA
Low-Level, V _{OL} (Max)	-	0, 10	10	-		0.05		-	0	0.05	mA
	-	0, 15	15	-		0.05		-	0	0.05	mA
Output Voltage:	-	0, 5	5	-		4.95		4.95	5	-	mA
High-Level, V _{OH} (Min)	-	0, 10	10	-		9.95		9.95	10	-	mA
	-	0, 15	15	-		14.95		14.95	15	-	mA
Input Low Voltage,	0.5, 4.5	-	5	-		1.5		-	-	1.5	V
V _{IL} (Max)	1, 9	-	10	-		3		-	-	3	V
	1.5, 13.5	-	15	-		4		-	-	4	V

CD4541B

Electrical Specifications (Continued)

CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)								
	V-	V	V						25		
PARAMETER	ν _ο (۷)	V _{IN} (V)	V _{DD} (V)	-55	-40	85	125	MIN	TYP	MAX	UNITS
Input High Voltage,	0.5, 4.5	-	5	-		3.5		3.5	-	-	V
V _{IH} (Min)	1, 9	-	10	-		7		7	-	-	V
	1.5, 13.5	-	15	-		11		11	-	-	V
Input Current, I _{IN} (Max)	-	0, 18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ

NOTE:

2. With AUTO RESET enabled, additional current drain at 25°C is:

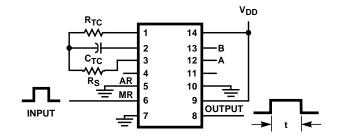
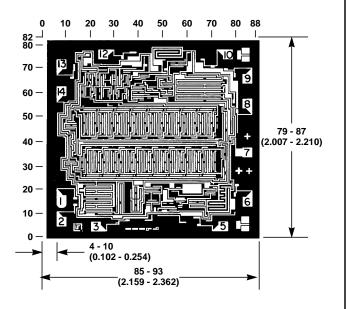
 $7\mu A$ (Typ), $200\mu A$ (Max) at 5V; $30\mu A$ (Typ), $350\mu A$ (Max) at 10V; $80\mu A$ (Typ), $500\mu A$ (Max) at 15V

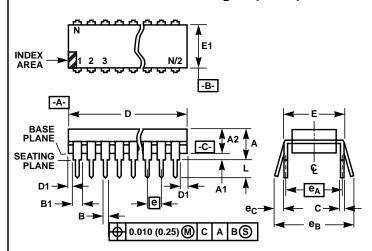
Dynamic Electrical Specifications $T_A = 25^{\circ}C$, Input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

PARAMETER	SYMBOL	V _{DD} (V)	MIN	TYP	MAX	UNITS
Propagation Delay Times	(2 ⁸) t _{PHL} , t _{PLH}	5	-	3.5	10.5	μs
Clock to Q		10	-	1.25	3.8	μs
		15	-	0.9	2.9	μs
	(2 ¹⁶) t _{PHL} , t _{PLH}	5	-	6.0	18	μs
		10	-	3.5	10	μs
		15	-	2.5	7.5	μs
Transition Time	t _{THL}	5	-	100	200	ns
		10	-	50	100	ns
		15	-	40	80	ns
	t _{THL}	5	-	180	360	ns
		10	-	90	180	ns
		15	-	65	130	ns
MASTER RESET, CLOCK		5	900	300	-	ns
Pulse Width		10	300	100	-	ns
		15	225	85	-	ns
Maximum Clock Pulse Input	f _{CL}	5	-	1.5	-	MHz
Frequency		10	-	4	-	MHz
		15	-	6	-	MHz
Maximum Clock Pulse Input Rise or Fall time	t _r , t _f	5, 10, 15		Unlimited		μs

Digital Timer Application

A positive pulse on MASTER RESET resets the counters and latch. The output goes high and remains high until the number of pulses, selected by A and B, are counted. This circuit is retriggerable and is as accurate as the input frequency. If additional accuracy is desired, an external clock can be used on pin 3. A setup time equal to the width of the one-shot output is required immediately following initial power up, during which time the output will be high.

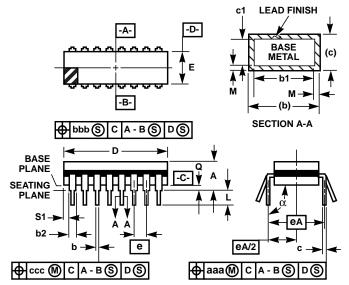

FIGURE 3. DIGITAL TIMER APPLICATION CIRCUIT

NOTE: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

FIGURE 4. DIMENSIONS AND PAD LAYOUT FOR CD4541B

Dual-In-Line Plastic Packages (PDIP)

NOTES:


- Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
- 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
- D, D1, and E1 dimensions do not include mold flash or protrusions.
 Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
- 6. E and $\boxed{e_A}$ are measured with the leads constrained to be perpendicular to datum $\boxed{-C_-}$.
- 7. e_B and e_C are measured at the lead tips with the leads unconstrained. e_C must be zero or greater.
- 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
- 9. N is the maximum number of terminal positions.
- Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).

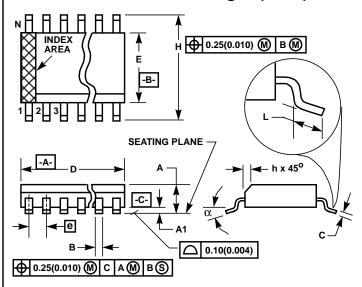
E14.3 (JEDEC MS-001-AA ISSUE D)
14 LEAD DUAL-IN-LINE PLASTIC PACKAGE

	INC	HES	MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
В	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
С	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
е	0.100	BSC	2.54 BSC		-
e _A	0.300	BSC	7.62	BSC	6
e _B	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	1	4	1	4	9

Rev. 0 12/93

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

NOTES:


- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- 5. This dimension allows for off-center lid, meniscus, and glass overrun.
- 6. Dimension Q shall be measured from the seating plane to the base plane.
- 7. Measure dimension S1 at all four corners.
- 8. N is the maximum number of terminal positions.
- 9. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 10. Controlling dimension: INCH.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

	INCHES		MILLIM	ETERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
А	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
С	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
Е	0.220	0.310	5.59	7.87	5
е	0.100	BSC	2.54	-	
eA	0.300	BSC	7.62	-	
eA/2	0.150	BSC	3.81	-	
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105 ⁰	90°	105 ⁰	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
М	-	0.0015	-	0.038	2, 3
N	1	4	1	4	8

Rev. 0 4/94

Small Outline Plastic Packages (SOIC)

NOTES:

- Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
- 2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side.
- 4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
- 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
- 6. "L" is the length of terminal for soldering to a substrate.
- 7. "N" is the number of terminal positions.
- 8. Terminal numbers are shown for reference only.
- The lead width "B", as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch).
- Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M14.15 (JEDEC MS-012-AB ISSUE C)
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC
PACKAGE

INC	HES	MILLIM		
MIN	MAX	MIN	MAX	NOTES
0.0532	0.0688	1.35	1.75	-
0.0040	0.0098	0.10	0.25	-
0.013	0.020	0.33	0.51	9
0.0075	0.0098	0.19	0.25	-
0.3367	0.3444	8.55	8.75	3
0.1497	0.1574	3.80	4.00	4
0.050	BSC	1.27	-	
0.2284	0.2440	5.80	6.20	-
0.0099	0.0196	0.25	0.50	5
0.016	0.050	0.40	1.27	6
1	4	1	4	7
0°	8 ⁰	0°	8 ⁰	-
	MIN 0.0532 0.0040 0.013 0.0075 0.3367 0.1497 0.050 0.2284 0.0099 0.016	0.0532 0.0688 0.0040 0.0098 0.013 0.020 0.0075 0.0098 0.3367 0.3444 0.1497 0.1574 0.050 BSC 0.2284 0.2440 0.0099 0.0196 0.016 0.050	MIN MAX MIN 0.0532 0.0688 1.35 0.0040 0.0098 0.10 0.013 0.020 0.33 0.0075 0.0098 0.19 0.3367 0.3444 8.55 0.1497 0.1574 3.80 0.050 BSC 1.27 0.2284 0.2440 5.80 0.0099 0.0196 0.25 0.016 0.050 0.40 14 1	MIN MAX MIN MAX 0.0532 0.0688 1.35 1.75 0.0040 0.0098 0.10 0.25 0.013 0.020 0.33 0.51 0.0075 0.0098 0.19 0.25 0.3367 0.3444 8.55 8.75 0.1497 0.1574 3.80 4.00 0.050 BSC 1.27 BSC 0.2284 0.2440 5.80 6.20 0.0099 0.0196 0.25 0.50 0.016 0.050 0.40 1.27 14 14 14

Rev. 0 12/93